Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors

The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2005-11, Vol.25 (45), p.10469-10478
Hauptverfasser: Jacob, Tija C, Bogdanov, Yury D, Magnus, Christopher, Saliba, Richard S, Kittler, Josef T, Haydon, Philip G, Moss, Stephen J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10478
container_issue 45
container_start_page 10469
container_title The Journal of neuroscience
container_volume 25
creator Jacob, Tija C
Bogdanov, Yury D
Magnus, Christopher
Saliba, Richard S
Kittler, Josef T
Haydon, Philip G
Moss, Stephen J
description The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecliptic pHluorin reporters. In hippocampal neurons, GABAA receptors incorporating pHluorin-tagged subunits were found to be clustered at synaptic sites and also expressed as diffuse extrasynaptic staining. By combining FRAP (fluorescence recovery after photobleaching) measurements with live imaging of FM4-64-labeled active presynaptic terminals, it was evident that clustered synaptic receptors exhibit significantly lower rates of mobility at the cell surface compared with their extrasynaptic counterparts. To examine the basis of this confinement, we used RNAi to inhibit the expression of gephyrin, a protein shown to regulate the accumulation of GABAA receptors at synaptic sites. However, whether gephyrin acts to control the actual formation of receptor clusters, their stability, or is simply a global regulator of receptor cell surface number remains unknown. Inhibiting gephyrin expression did not modify the total number of GABAA receptors expressed on the neuronal cell surface but significantly decreased the number of receptor clusters. Live imaging revealed that clusters that formed in the absence of gephyrin were significantly more mobile compared with those in control neurons. Together, our results demonstrate that synaptic GABAA receptors have lower levels of lateral mobility compared with their extrasynaptic counterparts, and suggest a specific role for gephyrin in reducing the diffusion of GABAA receptors, facilitating their accumulation at inhibitory synapses.
doi_str_mv 10.1523/JNEUROSCI.2267-05.2005
format Article
fullrecord <record><control><sourceid>pubmed_highw</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16280585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-18ed565766dc385300cfe7f32f57e05698bd2ec4358d8308d67ef0dfc50ba49a3</originalsourceid><addsrcrecordid>eNpVkE1PwkAURSdGI4j-BdKlm-Kb6Xx1Y1IrAoZIArKeDNMpHVPapi02_HuboEZX7yb33LN4CI0xTDAjwcPr23S7Xm3ixYQQLnxgEwLALtCwb0OfUMCXaAhEgM-poAN00zQfACAAi2s0wJxIYJIN0Xxmq-xUu8Jb2_0x161tvDazXmzz3Nsc61Qb6z2fCn1wpvHK1Nv0uWqd8WbRUxT1K2OrtqybW3SV6ryxd993hLYv0_d47i9Xs0UcLX1DOGt9LG3COBOcJyaQLAAwqRVpQFImLDAeyl1CrKEBk4kMQCZc2BSS1DDYaRrqYIQez97quDvYxNiirXWuqtoddH1SpXbqf1O4TO3LT8UFYZLQXjD-K_hd_vykB-7PQOb2Wedqq5qDzvMex6rrOsIUZQoD5WHwBWMbc80</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Jacob, Tija C ; Bogdanov, Yury D ; Magnus, Christopher ; Saliba, Richard S ; Kittler, Josef T ; Haydon, Philip G ; Moss, Stephen J</creator><creatorcontrib>Jacob, Tija C ; Bogdanov, Yury D ; Magnus, Christopher ; Saliba, Richard S ; Kittler, Josef T ; Haydon, Philip G ; Moss, Stephen J</creatorcontrib><description>The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecliptic pHluorin reporters. In hippocampal neurons, GABAA receptors incorporating pHluorin-tagged subunits were found to be clustered at synaptic sites and also expressed as diffuse extrasynaptic staining. By combining FRAP (fluorescence recovery after photobleaching) measurements with live imaging of FM4-64-labeled active presynaptic terminals, it was evident that clustered synaptic receptors exhibit significantly lower rates of mobility at the cell surface compared with their extrasynaptic counterparts. To examine the basis of this confinement, we used RNAi to inhibit the expression of gephyrin, a protein shown to regulate the accumulation of GABAA receptors at synaptic sites. However, whether gephyrin acts to control the actual formation of receptor clusters, their stability, or is simply a global regulator of receptor cell surface number remains unknown. Inhibiting gephyrin expression did not modify the total number of GABAA receptors expressed on the neuronal cell surface but significantly decreased the number of receptor clusters. Live imaging revealed that clusters that formed in the absence of gephyrin were significantly more mobile compared with those in control neurons. Together, our results demonstrate that synaptic GABAA receptors have lower levels of lateral mobility compared with their extrasynaptic counterparts, and suggest a specific role for gephyrin in reducing the diffusion of GABAA receptors, facilitating their accumulation at inhibitory synapses.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2267-05.2005</identifier><identifier>PMID: 16280585</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Biotinylation - methods ; Blotting, Western - methods ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Carrier Proteins - physiology ; Cellular/Molecular ; Cloning, Molecular - methods ; Dose-Response Relationship, Drug ; Electric Stimulation - methods ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - physiology ; Green Fluorescent Proteins - metabolism ; Hippocampus - cytology ; Humans ; Immunohistochemistry - methods ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Membrane Potentials - radiation effects ; Membrane Proteins - genetics ; Membrane Proteins - physiology ; Neural Inhibition - physiology ; Neurons - metabolism ; Nonlinear Dynamics ; Patch-Clamp Techniques - methods ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Photobleaching ; Presynaptic Terminals - metabolism ; Protein Subunits - metabolism ; Pyridinium Compounds - metabolism ; Quaternary Ammonium Compounds - metabolism ; Rats ; Receptors, AMPA - metabolism ; Receptors, GABA-A - genetics ; Receptors, GABA-A - metabolism ; RNA Interference - physiology ; Synapses - physiology ; TOR Serine-Threonine Kinases ; Transfection - methods ; Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><ispartof>The Journal of neuroscience, 2005-11, Vol.25 (45), p.10469-10478</ispartof><rights>Copyright © 2005 Society for Neuroscience 0270-6474/05/2510469-10.00/0 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-18ed565766dc385300cfe7f32f57e05698bd2ec4358d8308d67ef0dfc50ba49a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725824/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725824/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16280585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacob, Tija C</creatorcontrib><creatorcontrib>Bogdanov, Yury D</creatorcontrib><creatorcontrib>Magnus, Christopher</creatorcontrib><creatorcontrib>Saliba, Richard S</creatorcontrib><creatorcontrib>Kittler, Josef T</creatorcontrib><creatorcontrib>Haydon, Philip G</creatorcontrib><creatorcontrib>Moss, Stephen J</creatorcontrib><title>Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecliptic pHluorin reporters. In hippocampal neurons, GABAA receptors incorporating pHluorin-tagged subunits were found to be clustered at synaptic sites and also expressed as diffuse extrasynaptic staining. By combining FRAP (fluorescence recovery after photobleaching) measurements with live imaging of FM4-64-labeled active presynaptic terminals, it was evident that clustered synaptic receptors exhibit significantly lower rates of mobility at the cell surface compared with their extrasynaptic counterparts. To examine the basis of this confinement, we used RNAi to inhibit the expression of gephyrin, a protein shown to regulate the accumulation of GABAA receptors at synaptic sites. However, whether gephyrin acts to control the actual formation of receptor clusters, their stability, or is simply a global regulator of receptor cell surface number remains unknown. Inhibiting gephyrin expression did not modify the total number of GABAA receptors expressed on the neuronal cell surface but significantly decreased the number of receptor clusters. Live imaging revealed that clusters that formed in the absence of gephyrin were significantly more mobile compared with those in control neurons. Together, our results demonstrate that synaptic GABAA receptors have lower levels of lateral mobility compared with their extrasynaptic counterparts, and suggest a specific role for gephyrin in reducing the diffusion of GABAA receptors, facilitating their accumulation at inhibitory synapses.</description><subject>Animals</subject><subject>Biotinylation - methods</subject><subject>Blotting, Western - methods</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Carrier Proteins - physiology</subject><subject>Cellular/Molecular</subject><subject>Cloning, Molecular - methods</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electric Stimulation - methods</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - physiology</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Humans</subject><subject>Immunohistochemistry - methods</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Membrane Potentials - radiation effects</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons - metabolism</subject><subject>Nonlinear Dynamics</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Photobleaching</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Protein Subunits - metabolism</subject><subject>Pyridinium Compounds - metabolism</subject><subject>Quaternary Ammonium Compounds - metabolism</subject><subject>Rats</subject><subject>Receptors, AMPA - metabolism</subject><subject>Receptors, GABA-A - genetics</subject><subject>Receptors, GABA-A - metabolism</subject><subject>RNA Interference - physiology</subject><subject>Synapses - physiology</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transfection - methods</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1PwkAURSdGI4j-BdKlm-Kb6Xx1Y1IrAoZIArKeDNMpHVPapi02_HuboEZX7yb33LN4CI0xTDAjwcPr23S7Xm3ixYQQLnxgEwLALtCwb0OfUMCXaAhEgM-poAN00zQfACAAi2s0wJxIYJIN0Xxmq-xUu8Jb2_0x161tvDazXmzz3Nsc61Qb6z2fCn1wpvHK1Nv0uWqd8WbRUxT1K2OrtqybW3SV6ryxd993hLYv0_d47i9Xs0UcLX1DOGt9LG3COBOcJyaQLAAwqRVpQFImLDAeyl1CrKEBk4kMQCZc2BSS1DDYaRrqYIQez97quDvYxNiirXWuqtoddH1SpXbqf1O4TO3LT8UFYZLQXjD-K_hd_vykB-7PQOb2Wedqq5qDzvMex6rrOsIUZQoD5WHwBWMbc80</recordid><startdate>20051109</startdate><enddate>20051109</enddate><creator>Jacob, Tija C</creator><creator>Bogdanov, Yury D</creator><creator>Magnus, Christopher</creator><creator>Saliba, Richard S</creator><creator>Kittler, Josef T</creator><creator>Haydon, Philip G</creator><creator>Moss, Stephen J</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20051109</creationdate><title>Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors</title><author>Jacob, Tija C ; Bogdanov, Yury D ; Magnus, Christopher ; Saliba, Richard S ; Kittler, Josef T ; Haydon, Philip G ; Moss, Stephen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-18ed565766dc385300cfe7f32f57e05698bd2ec4358d8308d67ef0dfc50ba49a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biotinylation - methods</topic><topic>Blotting, Western - methods</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Carrier Proteins - physiology</topic><topic>Cellular/Molecular</topic><topic>Cloning, Molecular - methods</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electric Stimulation - methods</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - physiology</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Humans</topic><topic>Immunohistochemistry - methods</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Membrane Potentials - radiation effects</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons - metabolism</topic><topic>Nonlinear Dynamics</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Photobleaching</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Protein Subunits - metabolism</topic><topic>Pyridinium Compounds - metabolism</topic><topic>Quaternary Ammonium Compounds - metabolism</topic><topic>Rats</topic><topic>Receptors, AMPA - metabolism</topic><topic>Receptors, GABA-A - genetics</topic><topic>Receptors, GABA-A - metabolism</topic><topic>RNA Interference - physiology</topic><topic>Synapses - physiology</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transfection - methods</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacob, Tija C</creatorcontrib><creatorcontrib>Bogdanov, Yury D</creatorcontrib><creatorcontrib>Magnus, Christopher</creatorcontrib><creatorcontrib>Saliba, Richard S</creatorcontrib><creatorcontrib>Kittler, Josef T</creatorcontrib><creatorcontrib>Haydon, Philip G</creatorcontrib><creatorcontrib>Moss, Stephen J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, Tija C</au><au>Bogdanov, Yury D</au><au>Magnus, Christopher</au><au>Saliba, Richard S</au><au>Kittler, Josef T</au><au>Haydon, Philip G</au><au>Moss, Stephen J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2005-11-09</date><risdate>2005</risdate><volume>25</volume><issue>45</issue><spage>10469</spage><epage>10478</epage><pages>10469-10478</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecliptic pHluorin reporters. In hippocampal neurons, GABAA receptors incorporating pHluorin-tagged subunits were found to be clustered at synaptic sites and also expressed as diffuse extrasynaptic staining. By combining FRAP (fluorescence recovery after photobleaching) measurements with live imaging of FM4-64-labeled active presynaptic terminals, it was evident that clustered synaptic receptors exhibit significantly lower rates of mobility at the cell surface compared with their extrasynaptic counterparts. To examine the basis of this confinement, we used RNAi to inhibit the expression of gephyrin, a protein shown to regulate the accumulation of GABAA receptors at synaptic sites. However, whether gephyrin acts to control the actual formation of receptor clusters, their stability, or is simply a global regulator of receptor cell surface number remains unknown. Inhibiting gephyrin expression did not modify the total number of GABAA receptors expressed on the neuronal cell surface but significantly decreased the number of receptor clusters. Live imaging revealed that clusters that formed in the absence of gephyrin were significantly more mobile compared with those in control neurons. Together, our results demonstrate that synaptic GABAA receptors have lower levels of lateral mobility compared with their extrasynaptic counterparts, and suggest a specific role for gephyrin in reducing the diffusion of GABAA receptors, facilitating their accumulation at inhibitory synapses.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>16280585</pmid><doi>10.1523/JNEUROSCI.2267-05.2005</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2005-11, Vol.25 (45), p.10469-10478
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725824
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Biotinylation - methods
Blotting, Western - methods
Carrier Proteins - genetics
Carrier Proteins - metabolism
Carrier Proteins - physiology
Cellular/Molecular
Cloning, Molecular - methods
Dose-Response Relationship, Drug
Electric Stimulation - methods
Gene Expression Regulation - drug effects
Gene Expression Regulation - physiology
Green Fluorescent Proteins - metabolism
Hippocampus - cytology
Humans
Immunohistochemistry - methods
Membrane Potentials - drug effects
Membrane Potentials - physiology
Membrane Potentials - radiation effects
Membrane Proteins - genetics
Membrane Proteins - physiology
Neural Inhibition - physiology
Neurons - metabolism
Nonlinear Dynamics
Patch-Clamp Techniques - methods
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Photobleaching
Presynaptic Terminals - metabolism
Protein Subunits - metabolism
Pyridinium Compounds - metabolism
Quaternary Ammonium Compounds - metabolism
Rats
Receptors, AMPA - metabolism
Receptors, GABA-A - genetics
Receptors, GABA-A - metabolism
RNA Interference - physiology
Synapses - physiology
TOR Serine-Threonine Kinases
Transfection - methods
Vesicular Inhibitory Amino Acid Transport Proteins - metabolism
title Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gephyrin%20Regulates%20the%20Cell%20Surface%20Dynamics%20of%20Synaptic%20GABAA%20Receptors&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Jacob,%20Tija%20C&rft.date=2005-11-09&rft.volume=25&rft.issue=45&rft.spage=10469&rft.epage=10478&rft.pages=10469-10478&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2267-05.2005&rft_dat=%3Cpubmed_highw%3E16280585%3C/pubmed_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16280585&rfr_iscdi=true