Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors
The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecli...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2005-11, Vol.25 (45), p.10469-10478 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10478 |
---|---|
container_issue | 45 |
container_start_page | 10469 |
container_title | The Journal of neuroscience |
container_volume | 25 |
creator | Jacob, Tija C Bogdanov, Yury D Magnus, Christopher Saliba, Richard S Kittler, Josef T Haydon, Philip G Moss, Stephen J |
description | The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecliptic pHluorin reporters. In hippocampal neurons, GABAA receptors incorporating pHluorin-tagged subunits were found to be clustered at synaptic sites and also expressed as diffuse extrasynaptic staining. By combining FRAP (fluorescence recovery after photobleaching) measurements with live imaging of FM4-64-labeled active presynaptic terminals, it was evident that clustered synaptic receptors exhibit significantly lower rates of mobility at the cell surface compared with their extrasynaptic counterparts. To examine the basis of this confinement, we used RNAi to inhibit the expression of gephyrin, a protein shown to regulate the accumulation of GABAA receptors at synaptic sites. However, whether gephyrin acts to control the actual formation of receptor clusters, their stability, or is simply a global regulator of receptor cell surface number remains unknown. Inhibiting gephyrin expression did not modify the total number of GABAA receptors expressed on the neuronal cell surface but significantly decreased the number of receptor clusters. Live imaging revealed that clusters that formed in the absence of gephyrin were significantly more mobile compared with those in control neurons. Together, our results demonstrate that synaptic GABAA receptors have lower levels of lateral mobility compared with their extrasynaptic counterparts, and suggest a specific role for gephyrin in reducing the diffusion of GABAA receptors, facilitating their accumulation at inhibitory synapses. |
doi_str_mv | 10.1523/JNEUROSCI.2267-05.2005 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_highw</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16280585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-18ed565766dc385300cfe7f32f57e05698bd2ec4358d8308d67ef0dfc50ba49a3</originalsourceid><addsrcrecordid>eNpVkE1PwkAURSdGI4j-BdKlm-Kb6Xx1Y1IrAoZIArKeDNMpHVPapi02_HuboEZX7yb33LN4CI0xTDAjwcPr23S7Xm3ixYQQLnxgEwLALtCwb0OfUMCXaAhEgM-poAN00zQfACAAi2s0wJxIYJIN0Xxmq-xUu8Jb2_0x161tvDazXmzz3Nsc61Qb6z2fCn1wpvHK1Nv0uWqd8WbRUxT1K2OrtqybW3SV6ryxd993hLYv0_d47i9Xs0UcLX1DOGt9LG3COBOcJyaQLAAwqRVpQFImLDAeyl1CrKEBk4kMQCZc2BSS1DDYaRrqYIQez97quDvYxNiirXWuqtoddH1SpXbqf1O4TO3LT8UFYZLQXjD-K_hd_vykB-7PQOb2Wedqq5qDzvMex6rrOsIUZQoD5WHwBWMbc80</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Jacob, Tija C ; Bogdanov, Yury D ; Magnus, Christopher ; Saliba, Richard S ; Kittler, Josef T ; Haydon, Philip G ; Moss, Stephen J</creator><creatorcontrib>Jacob, Tija C ; Bogdanov, Yury D ; Magnus, Christopher ; Saliba, Richard S ; Kittler, Josef T ; Haydon, Philip G ; Moss, Stephen J</creatorcontrib><description>The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecliptic pHluorin reporters. In hippocampal neurons, GABAA receptors incorporating pHluorin-tagged subunits were found to be clustered at synaptic sites and also expressed as diffuse extrasynaptic staining. By combining FRAP (fluorescence recovery after photobleaching) measurements with live imaging of FM4-64-labeled active presynaptic terminals, it was evident that clustered synaptic receptors exhibit significantly lower rates of mobility at the cell surface compared with their extrasynaptic counterparts. To examine the basis of this confinement, we used RNAi to inhibit the expression of gephyrin, a protein shown to regulate the accumulation of GABAA receptors at synaptic sites. However, whether gephyrin acts to control the actual formation of receptor clusters, their stability, or is simply a global regulator of receptor cell surface number remains unknown. Inhibiting gephyrin expression did not modify the total number of GABAA receptors expressed on the neuronal cell surface but significantly decreased the number of receptor clusters. Live imaging revealed that clusters that formed in the absence of gephyrin were significantly more mobile compared with those in control neurons. Together, our results demonstrate that synaptic GABAA receptors have lower levels of lateral mobility compared with their extrasynaptic counterparts, and suggest a specific role for gephyrin in reducing the diffusion of GABAA receptors, facilitating their accumulation at inhibitory synapses.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2267-05.2005</identifier><identifier>PMID: 16280585</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Biotinylation - methods ; Blotting, Western - methods ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Carrier Proteins - physiology ; Cellular/Molecular ; Cloning, Molecular - methods ; Dose-Response Relationship, Drug ; Electric Stimulation - methods ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - physiology ; Green Fluorescent Proteins - metabolism ; Hippocampus - cytology ; Humans ; Immunohistochemistry - methods ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Membrane Potentials - radiation effects ; Membrane Proteins - genetics ; Membrane Proteins - physiology ; Neural Inhibition - physiology ; Neurons - metabolism ; Nonlinear Dynamics ; Patch-Clamp Techniques - methods ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Photobleaching ; Presynaptic Terminals - metabolism ; Protein Subunits - metabolism ; Pyridinium Compounds - metabolism ; Quaternary Ammonium Compounds - metabolism ; Rats ; Receptors, AMPA - metabolism ; Receptors, GABA-A - genetics ; Receptors, GABA-A - metabolism ; RNA Interference - physiology ; Synapses - physiology ; TOR Serine-Threonine Kinases ; Transfection - methods ; Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><ispartof>The Journal of neuroscience, 2005-11, Vol.25 (45), p.10469-10478</ispartof><rights>Copyright © 2005 Society for Neuroscience 0270-6474/05/2510469-10.00/0 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-18ed565766dc385300cfe7f32f57e05698bd2ec4358d8308d67ef0dfc50ba49a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725824/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725824/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16280585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacob, Tija C</creatorcontrib><creatorcontrib>Bogdanov, Yury D</creatorcontrib><creatorcontrib>Magnus, Christopher</creatorcontrib><creatorcontrib>Saliba, Richard S</creatorcontrib><creatorcontrib>Kittler, Josef T</creatorcontrib><creatorcontrib>Haydon, Philip G</creatorcontrib><creatorcontrib>Moss, Stephen J</creatorcontrib><title>Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecliptic pHluorin reporters. In hippocampal neurons, GABAA receptors incorporating pHluorin-tagged subunits were found to be clustered at synaptic sites and also expressed as diffuse extrasynaptic staining. By combining FRAP (fluorescence recovery after photobleaching) measurements with live imaging of FM4-64-labeled active presynaptic terminals, it was evident that clustered synaptic receptors exhibit significantly lower rates of mobility at the cell surface compared with their extrasynaptic counterparts. To examine the basis of this confinement, we used RNAi to inhibit the expression of gephyrin, a protein shown to regulate the accumulation of GABAA receptors at synaptic sites. However, whether gephyrin acts to control the actual formation of receptor clusters, their stability, or is simply a global regulator of receptor cell surface number remains unknown. Inhibiting gephyrin expression did not modify the total number of GABAA receptors expressed on the neuronal cell surface but significantly decreased the number of receptor clusters. Live imaging revealed that clusters that formed in the absence of gephyrin were significantly more mobile compared with those in control neurons. Together, our results demonstrate that synaptic GABAA receptors have lower levels of lateral mobility compared with their extrasynaptic counterparts, and suggest a specific role for gephyrin in reducing the diffusion of GABAA receptors, facilitating their accumulation at inhibitory synapses.</description><subject>Animals</subject><subject>Biotinylation - methods</subject><subject>Blotting, Western - methods</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Carrier Proteins - physiology</subject><subject>Cellular/Molecular</subject><subject>Cloning, Molecular - methods</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electric Stimulation - methods</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - physiology</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Humans</subject><subject>Immunohistochemistry - methods</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Membrane Potentials - radiation effects</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons - metabolism</subject><subject>Nonlinear Dynamics</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Photobleaching</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Protein Subunits - metabolism</subject><subject>Pyridinium Compounds - metabolism</subject><subject>Quaternary Ammonium Compounds - metabolism</subject><subject>Rats</subject><subject>Receptors, AMPA - metabolism</subject><subject>Receptors, GABA-A - genetics</subject><subject>Receptors, GABA-A - metabolism</subject><subject>RNA Interference - physiology</subject><subject>Synapses - physiology</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transfection - methods</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1PwkAURSdGI4j-BdKlm-Kb6Xx1Y1IrAoZIArKeDNMpHVPapi02_HuboEZX7yb33LN4CI0xTDAjwcPr23S7Xm3ixYQQLnxgEwLALtCwb0OfUMCXaAhEgM-poAN00zQfACAAi2s0wJxIYJIN0Xxmq-xUu8Jb2_0x161tvDazXmzz3Nsc61Qb6z2fCn1wpvHK1Nv0uWqd8WbRUxT1K2OrtqybW3SV6ryxd993hLYv0_d47i9Xs0UcLX1DOGt9LG3COBOcJyaQLAAwqRVpQFImLDAeyl1CrKEBk4kMQCZc2BSS1DDYaRrqYIQez97quDvYxNiirXWuqtoddH1SpXbqf1O4TO3LT8UFYZLQXjD-K_hd_vykB-7PQOb2Wedqq5qDzvMex6rrOsIUZQoD5WHwBWMbc80</recordid><startdate>20051109</startdate><enddate>20051109</enddate><creator>Jacob, Tija C</creator><creator>Bogdanov, Yury D</creator><creator>Magnus, Christopher</creator><creator>Saliba, Richard S</creator><creator>Kittler, Josef T</creator><creator>Haydon, Philip G</creator><creator>Moss, Stephen J</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20051109</creationdate><title>Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors</title><author>Jacob, Tija C ; Bogdanov, Yury D ; Magnus, Christopher ; Saliba, Richard S ; Kittler, Josef T ; Haydon, Philip G ; Moss, Stephen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-18ed565766dc385300cfe7f32f57e05698bd2ec4358d8308d67ef0dfc50ba49a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biotinylation - methods</topic><topic>Blotting, Western - methods</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Carrier Proteins - physiology</topic><topic>Cellular/Molecular</topic><topic>Cloning, Molecular - methods</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electric Stimulation - methods</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - physiology</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Humans</topic><topic>Immunohistochemistry - methods</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Membrane Potentials - radiation effects</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons - metabolism</topic><topic>Nonlinear Dynamics</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Photobleaching</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Protein Subunits - metabolism</topic><topic>Pyridinium Compounds - metabolism</topic><topic>Quaternary Ammonium Compounds - metabolism</topic><topic>Rats</topic><topic>Receptors, AMPA - metabolism</topic><topic>Receptors, GABA-A - genetics</topic><topic>Receptors, GABA-A - metabolism</topic><topic>RNA Interference - physiology</topic><topic>Synapses - physiology</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transfection - methods</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacob, Tija C</creatorcontrib><creatorcontrib>Bogdanov, Yury D</creatorcontrib><creatorcontrib>Magnus, Christopher</creatorcontrib><creatorcontrib>Saliba, Richard S</creatorcontrib><creatorcontrib>Kittler, Josef T</creatorcontrib><creatorcontrib>Haydon, Philip G</creatorcontrib><creatorcontrib>Moss, Stephen J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, Tija C</au><au>Bogdanov, Yury D</au><au>Magnus, Christopher</au><au>Saliba, Richard S</au><au>Kittler, Josef T</au><au>Haydon, Philip G</au><au>Moss, Stephen J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2005-11-09</date><risdate>2005</risdate><volume>25</volume><issue>45</issue><spage>10469</spage><epage>10478</epage><pages>10469-10478</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecliptic pHluorin reporters. In hippocampal neurons, GABAA receptors incorporating pHluorin-tagged subunits were found to be clustered at synaptic sites and also expressed as diffuse extrasynaptic staining. By combining FRAP (fluorescence recovery after photobleaching) measurements with live imaging of FM4-64-labeled active presynaptic terminals, it was evident that clustered synaptic receptors exhibit significantly lower rates of mobility at the cell surface compared with their extrasynaptic counterparts. To examine the basis of this confinement, we used RNAi to inhibit the expression of gephyrin, a protein shown to regulate the accumulation of GABAA receptors at synaptic sites. However, whether gephyrin acts to control the actual formation of receptor clusters, their stability, or is simply a global regulator of receptor cell surface number remains unknown. Inhibiting gephyrin expression did not modify the total number of GABAA receptors expressed on the neuronal cell surface but significantly decreased the number of receptor clusters. Live imaging revealed that clusters that formed in the absence of gephyrin were significantly more mobile compared with those in control neurons. Together, our results demonstrate that synaptic GABAA receptors have lower levels of lateral mobility compared with their extrasynaptic counterparts, and suggest a specific role for gephyrin in reducing the diffusion of GABAA receptors, facilitating their accumulation at inhibitory synapses.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>16280585</pmid><doi>10.1523/JNEUROSCI.2267-05.2005</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2005-11, Vol.25 (45), p.10469-10478 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725824 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Biotinylation - methods Blotting, Western - methods Carrier Proteins - genetics Carrier Proteins - metabolism Carrier Proteins - physiology Cellular/Molecular Cloning, Molecular - methods Dose-Response Relationship, Drug Electric Stimulation - methods Gene Expression Regulation - drug effects Gene Expression Regulation - physiology Green Fluorescent Proteins - metabolism Hippocampus - cytology Humans Immunohistochemistry - methods Membrane Potentials - drug effects Membrane Potentials - physiology Membrane Potentials - radiation effects Membrane Proteins - genetics Membrane Proteins - physiology Neural Inhibition - physiology Neurons - metabolism Nonlinear Dynamics Patch-Clamp Techniques - methods Phosphotransferases (Alcohol Group Acceptor) - metabolism Photobleaching Presynaptic Terminals - metabolism Protein Subunits - metabolism Pyridinium Compounds - metabolism Quaternary Ammonium Compounds - metabolism Rats Receptors, AMPA - metabolism Receptors, GABA-A - genetics Receptors, GABA-A - metabolism RNA Interference - physiology Synapses - physiology TOR Serine-Threonine Kinases Transfection - methods Vesicular Inhibitory Amino Acid Transport Proteins - metabolism |
title | Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gephyrin%20Regulates%20the%20Cell%20Surface%20Dynamics%20of%20Synaptic%20GABAA%20Receptors&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Jacob,%20Tija%20C&rft.date=2005-11-09&rft.volume=25&rft.issue=45&rft.spage=10469&rft.epage=10478&rft.pages=10469-10478&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2267-05.2005&rft_dat=%3Cpubmed_highw%3E16280585%3C/pubmed_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16280585&rfr_iscdi=true |