Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons

Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2005-08, Vol.25 (31), p.7139-7149
Hauptverfasser: Fordyce, Christopher B, Jagasia, Ravi, Zhu, Xiaoping, Schlichter, Lyanne C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7149
container_issue 31
container_start_page 7139
container_title The Journal of neuroscience
container_volume 25
creator Fordyce, Christopher B
Jagasia, Ravi
Zhu, Xiaoping
Schlichter, Lyanne C
description Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv1.3 (KCNA3) channels, which we showed previously are important for their proliferation and the NADPH-mediated respiratory burst. Here, we demonstrate the potential for targeting Kv1.3 channels to control CNS inflammation. Rat microglia express Kv1.2, Kv1.3, and Kv1.5 transcripts and protein, but only a Kv1.3 current was detected. When microglia were activated with lipopolysaccharide or a phorbol ester, only the Kv1.3 transcript (but not protein) expression changed. Using a Transwell cell-culture system that allows separate drug treatment of microglia or neurons, we found that activated microglia killed postnatal hippocampal neurons through a process that requires Kv1.3 channel activity in microglia but not in neurons. A major neurotoxic molecule in this model was peroxynitrite, which is formed from superoxide and nitric oxide; thus, it is significant that Kv1.3 channel blockers reduced the respiratory burst, but not nitric oxide production, by the activated microglia. In addressing the biochemical pathway affected by Kv1.3 channel activity, we found that Kv1.3 acts via a different cellular mechanism from the broad-spectrum drug minocycline, which is often used in animal models of neuroinflammation. That is, the dose-dependent reduction in neuron killing by minocycline corresponded with a reduction in p38 mitogen-activated protein kinase activation in microglia; however, none of the Kv1.3 blockers affected p38 activation.
doi_str_mv 10.1523/JNEUROSCI.1251-05.2005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17408236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-6af9b16c02f48a721e5b70275a62f86dd1f4d4de28a38dfbfce01be8e8943b2d3</originalsourceid><addsrcrecordid>eNpVkVtP3DAQha2qVdnS_gWUp_Ypy_ievFRCKS23gtTCs-Ukk40rbwJ2wop_j1e7Avpkaeab46NzCDmisKSS8eOL69O7Pzd_q_MlZZLmIJcMQL4ji7QtcyaAvicLYBpyJbQ4IJ9i_AcAGqj-SA6oAl3yUi3Ij9-uCePKO5tdPtIlz6reDgP6mFXjMAVXzxNm05jd9uhCdlI776an7eDSeZ9d4xzGIX4mHzrrI37Zv4fk7ufpbXWWX938Oq9OrvJGsmLKle3KmqoGWCcKqxlFWevkUVrFukK1Le1EK1pkheVF29Vdg0BrLLAoBa9Zyw_J953u_VyvsW0wObTe3Ae3tuHJjNaZ_zeD681qfDRKsxSaSAJf9wJhfJgxTmbtYoPe2wHHORqqBRSMqwSqHZjCiTFg9_IJBbMtwLwUYLYFGJBmW0A6PHpr8fVsn3gCvu2A3q36jQto4tp6n3BqNpsNk4ZToykv-TP3spDV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17408236</pqid></control><display><type>article</type><title>Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Fordyce, Christopher B ; Jagasia, Ravi ; Zhu, Xiaoping ; Schlichter, Lyanne C</creator><creatorcontrib>Fordyce, Christopher B ; Jagasia, Ravi ; Zhu, Xiaoping ; Schlichter, Lyanne C</creatorcontrib><description>Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv1.3 (KCNA3) channels, which we showed previously are important for their proliferation and the NADPH-mediated respiratory burst. Here, we demonstrate the potential for targeting Kv1.3 channels to control CNS inflammation. Rat microglia express Kv1.2, Kv1.3, and Kv1.5 transcripts and protein, but only a Kv1.3 current was detected. When microglia were activated with lipopolysaccharide or a phorbol ester, only the Kv1.3 transcript (but not protein) expression changed. Using a Transwell cell-culture system that allows separate drug treatment of microglia or neurons, we found that activated microglia killed postnatal hippocampal neurons through a process that requires Kv1.3 channel activity in microglia but not in neurons. A major neurotoxic molecule in this model was peroxynitrite, which is formed from superoxide and nitric oxide; thus, it is significant that Kv1.3 channel blockers reduced the respiratory burst, but not nitric oxide production, by the activated microglia. In addressing the biochemical pathway affected by Kv1.3 channel activity, we found that Kv1.3 acts via a different cellular mechanism from the broad-spectrum drug minocycline, which is often used in animal models of neuroinflammation. That is, the dose-dependent reduction in neuron killing by minocycline corresponded with a reduction in p38 mitogen-activated protein kinase activation in microglia; however, none of the Kv1.3 blockers affected p38 activation.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1251-05.2005</identifier><identifier>PMID: 16079396</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Animals, Newborn ; Cell Death - physiology ; Cells, Cultured ; Cellular/Molecular ; Electric Conductivity ; Enzyme Activation - physiology ; Kv1.3 Potassium Channel - antagonists &amp; inhibitors ; Kv1.3 Potassium Channel - metabolism ; Kv1.3 Potassium Channel - physiology ; Microglia - metabolism ; Microglia - physiology ; Neurons - physiology ; Neurotoxins - antagonists &amp; inhibitors ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peroxynitrous Acid - biosynthesis ; Rats ; Rats, Wistar ; Respiratory Burst - physiology ; Shaker Superfamily of Potassium Channels - metabolism</subject><ispartof>The Journal of neuroscience, 2005-08, Vol.25 (31), p.7139-7149</ispartof><rights>Copyright © 2005 Society for Neuroscience 0270-6474/05/257139-11.00/0 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-6af9b16c02f48a721e5b70275a62f86dd1f4d4de28a38dfbfce01be8e8943b2d3</citedby><cites>FETCH-LOGICAL-c528t-6af9b16c02f48a721e5b70275a62f86dd1f4d4de28a38dfbfce01be8e8943b2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725234/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725234/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16079396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fordyce, Christopher B</creatorcontrib><creatorcontrib>Jagasia, Ravi</creatorcontrib><creatorcontrib>Zhu, Xiaoping</creatorcontrib><creatorcontrib>Schlichter, Lyanne C</creatorcontrib><title>Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv1.3 (KCNA3) channels, which we showed previously are important for their proliferation and the NADPH-mediated respiratory burst. Here, we demonstrate the potential for targeting Kv1.3 channels to control CNS inflammation. Rat microglia express Kv1.2, Kv1.3, and Kv1.5 transcripts and protein, but only a Kv1.3 current was detected. When microglia were activated with lipopolysaccharide or a phorbol ester, only the Kv1.3 transcript (but not protein) expression changed. Using a Transwell cell-culture system that allows separate drug treatment of microglia or neurons, we found that activated microglia killed postnatal hippocampal neurons through a process that requires Kv1.3 channel activity in microglia but not in neurons. A major neurotoxic molecule in this model was peroxynitrite, which is formed from superoxide and nitric oxide; thus, it is significant that Kv1.3 channel blockers reduced the respiratory burst, but not nitric oxide production, by the activated microglia. In addressing the biochemical pathway affected by Kv1.3 channel activity, we found that Kv1.3 acts via a different cellular mechanism from the broad-spectrum drug minocycline, which is often used in animal models of neuroinflammation. That is, the dose-dependent reduction in neuron killing by minocycline corresponded with a reduction in p38 mitogen-activated protein kinase activation in microglia; however, none of the Kv1.3 blockers affected p38 activation.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Cell Death - physiology</subject><subject>Cells, Cultured</subject><subject>Cellular/Molecular</subject><subject>Electric Conductivity</subject><subject>Enzyme Activation - physiology</subject><subject>Kv1.3 Potassium Channel - antagonists &amp; inhibitors</subject><subject>Kv1.3 Potassium Channel - metabolism</subject><subject>Kv1.3 Potassium Channel - physiology</subject><subject>Microglia - metabolism</subject><subject>Microglia - physiology</subject><subject>Neurons - physiology</subject><subject>Neurotoxins - antagonists &amp; inhibitors</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peroxynitrous Acid - biosynthesis</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Respiratory Burst - physiology</subject><subject>Shaker Superfamily of Potassium Channels - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtP3DAQha2qVdnS_gWUp_Ypy_ievFRCKS23gtTCs-Ukk40rbwJ2wop_j1e7Avpkaeab46NzCDmisKSS8eOL69O7Pzd_q_MlZZLmIJcMQL4ji7QtcyaAvicLYBpyJbQ4IJ9i_AcAGqj-SA6oAl3yUi3Ij9-uCePKO5tdPtIlz6reDgP6mFXjMAVXzxNm05jd9uhCdlI776an7eDSeZ9d4xzGIX4mHzrrI37Zv4fk7ufpbXWWX938Oq9OrvJGsmLKle3KmqoGWCcKqxlFWevkUVrFukK1Le1EK1pkheVF29Vdg0BrLLAoBa9Zyw_J953u_VyvsW0wObTe3Ae3tuHJjNaZ_zeD681qfDRKsxSaSAJf9wJhfJgxTmbtYoPe2wHHORqqBRSMqwSqHZjCiTFg9_IJBbMtwLwUYLYFGJBmW0A6PHpr8fVsn3gCvu2A3q36jQto4tp6n3BqNpsNk4ZToykv-TP3spDV</recordid><startdate>20050803</startdate><enddate>20050803</enddate><creator>Fordyce, Christopher B</creator><creator>Jagasia, Ravi</creator><creator>Zhu, Xiaoping</creator><creator>Schlichter, Lyanne C</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20050803</creationdate><title>Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons</title><author>Fordyce, Christopher B ; Jagasia, Ravi ; Zhu, Xiaoping ; Schlichter, Lyanne C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-6af9b16c02f48a721e5b70275a62f86dd1f4d4de28a38dfbfce01be8e8943b2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Cell Death - physiology</topic><topic>Cells, Cultured</topic><topic>Cellular/Molecular</topic><topic>Electric Conductivity</topic><topic>Enzyme Activation - physiology</topic><topic>Kv1.3 Potassium Channel - antagonists &amp; inhibitors</topic><topic>Kv1.3 Potassium Channel - metabolism</topic><topic>Kv1.3 Potassium Channel - physiology</topic><topic>Microglia - metabolism</topic><topic>Microglia - physiology</topic><topic>Neurons - physiology</topic><topic>Neurotoxins - antagonists &amp; inhibitors</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peroxynitrous Acid - biosynthesis</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Respiratory Burst - physiology</topic><topic>Shaker Superfamily of Potassium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fordyce, Christopher B</creatorcontrib><creatorcontrib>Jagasia, Ravi</creatorcontrib><creatorcontrib>Zhu, Xiaoping</creatorcontrib><creatorcontrib>Schlichter, Lyanne C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fordyce, Christopher B</au><au>Jagasia, Ravi</au><au>Zhu, Xiaoping</au><au>Schlichter, Lyanne C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2005-08-03</date><risdate>2005</risdate><volume>25</volume><issue>31</issue><spage>7139</spage><epage>7149</epage><pages>7139-7149</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv1.3 (KCNA3) channels, which we showed previously are important for their proliferation and the NADPH-mediated respiratory burst. Here, we demonstrate the potential for targeting Kv1.3 channels to control CNS inflammation. Rat microglia express Kv1.2, Kv1.3, and Kv1.5 transcripts and protein, but only a Kv1.3 current was detected. When microglia were activated with lipopolysaccharide or a phorbol ester, only the Kv1.3 transcript (but not protein) expression changed. Using a Transwell cell-culture system that allows separate drug treatment of microglia or neurons, we found that activated microglia killed postnatal hippocampal neurons through a process that requires Kv1.3 channel activity in microglia but not in neurons. A major neurotoxic molecule in this model was peroxynitrite, which is formed from superoxide and nitric oxide; thus, it is significant that Kv1.3 channel blockers reduced the respiratory burst, but not nitric oxide production, by the activated microglia. In addressing the biochemical pathway affected by Kv1.3 channel activity, we found that Kv1.3 acts via a different cellular mechanism from the broad-spectrum drug minocycline, which is often used in animal models of neuroinflammation. That is, the dose-dependent reduction in neuron killing by minocycline corresponded with a reduction in p38 mitogen-activated protein kinase activation in microglia; however, none of the Kv1.3 blockers affected p38 activation.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>16079396</pmid><doi>10.1523/JNEUROSCI.1251-05.2005</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2005-08, Vol.25 (31), p.7139-7149
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725234
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Animals, Newborn
Cell Death - physiology
Cells, Cultured
Cellular/Molecular
Electric Conductivity
Enzyme Activation - physiology
Kv1.3 Potassium Channel - antagonists & inhibitors
Kv1.3 Potassium Channel - metabolism
Kv1.3 Potassium Channel - physiology
Microglia - metabolism
Microglia - physiology
Neurons - physiology
Neurotoxins - antagonists & inhibitors
p38 Mitogen-Activated Protein Kinases - metabolism
Peroxynitrous Acid - biosynthesis
Rats
Rats, Wistar
Respiratory Burst - physiology
Shaker Superfamily of Potassium Channels - metabolism
title Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microglia%20Kv1.3%20Channels%20Contribute%20to%20Their%20Ability%20to%20Kill%20Neurons&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Fordyce,%20Christopher%20B&rft.date=2005-08-03&rft.volume=25&rft.issue=31&rft.spage=7139&rft.epage=7149&rft.pages=7139-7149&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1251-05.2005&rft_dat=%3Cproquest_pubme%3E17408236%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17408236&rft_id=info:pmid/16079396&rfr_iscdi=true