Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons
Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2005-08, Vol.25 (31), p.7139-7149 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7149 |
---|---|
container_issue | 31 |
container_start_page | 7139 |
container_title | The Journal of neuroscience |
container_volume | 25 |
creator | Fordyce, Christopher B Jagasia, Ravi Zhu, Xiaoping Schlichter, Lyanne C |
description | Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv1.3 (KCNA3) channels, which we showed previously are important for their proliferation and the NADPH-mediated respiratory burst. Here, we demonstrate the potential for targeting Kv1.3 channels to control CNS inflammation. Rat microglia express Kv1.2, Kv1.3, and Kv1.5 transcripts and protein, but only a Kv1.3 current was detected. When microglia were activated with lipopolysaccharide or a phorbol ester, only the Kv1.3 transcript (but not protein) expression changed. Using a Transwell cell-culture system that allows separate drug treatment of microglia or neurons, we found that activated microglia killed postnatal hippocampal neurons through a process that requires Kv1.3 channel activity in microglia but not in neurons. A major neurotoxic molecule in this model was peroxynitrite, which is formed from superoxide and nitric oxide; thus, it is significant that Kv1.3 channel blockers reduced the respiratory burst, but not nitric oxide production, by the activated microglia. In addressing the biochemical pathway affected by Kv1.3 channel activity, we found that Kv1.3 acts via a different cellular mechanism from the broad-spectrum drug minocycline, which is often used in animal models of neuroinflammation. That is, the dose-dependent reduction in neuron killing by minocycline corresponded with a reduction in p38 mitogen-activated protein kinase activation in microglia; however, none of the Kv1.3 blockers affected p38 activation. |
doi_str_mv | 10.1523/JNEUROSCI.1251-05.2005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17408236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-6af9b16c02f48a721e5b70275a62f86dd1f4d4de28a38dfbfce01be8e8943b2d3</originalsourceid><addsrcrecordid>eNpVkVtP3DAQha2qVdnS_gWUp_Ypy_ievFRCKS23gtTCs-Ukk40rbwJ2wop_j1e7Avpkaeab46NzCDmisKSS8eOL69O7Pzd_q_MlZZLmIJcMQL4ji7QtcyaAvicLYBpyJbQ4IJ9i_AcAGqj-SA6oAl3yUi3Ij9-uCePKO5tdPtIlz6reDgP6mFXjMAVXzxNm05jd9uhCdlI776an7eDSeZ9d4xzGIX4mHzrrI37Zv4fk7ufpbXWWX938Oq9OrvJGsmLKle3KmqoGWCcKqxlFWevkUVrFukK1Le1EK1pkheVF29Vdg0BrLLAoBa9Zyw_J953u_VyvsW0wObTe3Ae3tuHJjNaZ_zeD681qfDRKsxSaSAJf9wJhfJgxTmbtYoPe2wHHORqqBRSMqwSqHZjCiTFg9_IJBbMtwLwUYLYFGJBmW0A6PHpr8fVsn3gCvu2A3q36jQto4tp6n3BqNpsNk4ZToykv-TP3spDV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17408236</pqid></control><display><type>article</type><title>Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Fordyce, Christopher B ; Jagasia, Ravi ; Zhu, Xiaoping ; Schlichter, Lyanne C</creator><creatorcontrib>Fordyce, Christopher B ; Jagasia, Ravi ; Zhu, Xiaoping ; Schlichter, Lyanne C</creatorcontrib><description>Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv1.3 (KCNA3) channels, which we showed previously are important for their proliferation and the NADPH-mediated respiratory burst. Here, we demonstrate the potential for targeting Kv1.3 channels to control CNS inflammation. Rat microglia express Kv1.2, Kv1.3, and Kv1.5 transcripts and protein, but only a Kv1.3 current was detected. When microglia were activated with lipopolysaccharide or a phorbol ester, only the Kv1.3 transcript (but not protein) expression changed. Using a Transwell cell-culture system that allows separate drug treatment of microglia or neurons, we found that activated microglia killed postnatal hippocampal neurons through a process that requires Kv1.3 channel activity in microglia but not in neurons. A major neurotoxic molecule in this model was peroxynitrite, which is formed from superoxide and nitric oxide; thus, it is significant that Kv1.3 channel blockers reduced the respiratory burst, but not nitric oxide production, by the activated microglia. In addressing the biochemical pathway affected by Kv1.3 channel activity, we found that Kv1.3 acts via a different cellular mechanism from the broad-spectrum drug minocycline, which is often used in animal models of neuroinflammation. That is, the dose-dependent reduction in neuron killing by minocycline corresponded with a reduction in p38 mitogen-activated protein kinase activation in microglia; however, none of the Kv1.3 blockers affected p38 activation.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1251-05.2005</identifier><identifier>PMID: 16079396</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Animals, Newborn ; Cell Death - physiology ; Cells, Cultured ; Cellular/Molecular ; Electric Conductivity ; Enzyme Activation - physiology ; Kv1.3 Potassium Channel - antagonists & inhibitors ; Kv1.3 Potassium Channel - metabolism ; Kv1.3 Potassium Channel - physiology ; Microglia - metabolism ; Microglia - physiology ; Neurons - physiology ; Neurotoxins - antagonists & inhibitors ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peroxynitrous Acid - biosynthesis ; Rats ; Rats, Wistar ; Respiratory Burst - physiology ; Shaker Superfamily of Potassium Channels - metabolism</subject><ispartof>The Journal of neuroscience, 2005-08, Vol.25 (31), p.7139-7149</ispartof><rights>Copyright © 2005 Society for Neuroscience 0270-6474/05/257139-11.00/0 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-6af9b16c02f48a721e5b70275a62f86dd1f4d4de28a38dfbfce01be8e8943b2d3</citedby><cites>FETCH-LOGICAL-c528t-6af9b16c02f48a721e5b70275a62f86dd1f4d4de28a38dfbfce01be8e8943b2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725234/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725234/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16079396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fordyce, Christopher B</creatorcontrib><creatorcontrib>Jagasia, Ravi</creatorcontrib><creatorcontrib>Zhu, Xiaoping</creatorcontrib><creatorcontrib>Schlichter, Lyanne C</creatorcontrib><title>Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv1.3 (KCNA3) channels, which we showed previously are important for their proliferation and the NADPH-mediated respiratory burst. Here, we demonstrate the potential for targeting Kv1.3 channels to control CNS inflammation. Rat microglia express Kv1.2, Kv1.3, and Kv1.5 transcripts and protein, but only a Kv1.3 current was detected. When microglia were activated with lipopolysaccharide or a phorbol ester, only the Kv1.3 transcript (but not protein) expression changed. Using a Transwell cell-culture system that allows separate drug treatment of microglia or neurons, we found that activated microglia killed postnatal hippocampal neurons through a process that requires Kv1.3 channel activity in microglia but not in neurons. A major neurotoxic molecule in this model was peroxynitrite, which is formed from superoxide and nitric oxide; thus, it is significant that Kv1.3 channel blockers reduced the respiratory burst, but not nitric oxide production, by the activated microglia. In addressing the biochemical pathway affected by Kv1.3 channel activity, we found that Kv1.3 acts via a different cellular mechanism from the broad-spectrum drug minocycline, which is often used in animal models of neuroinflammation. That is, the dose-dependent reduction in neuron killing by minocycline corresponded with a reduction in p38 mitogen-activated protein kinase activation in microglia; however, none of the Kv1.3 blockers affected p38 activation.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Cell Death - physiology</subject><subject>Cells, Cultured</subject><subject>Cellular/Molecular</subject><subject>Electric Conductivity</subject><subject>Enzyme Activation - physiology</subject><subject>Kv1.3 Potassium Channel - antagonists & inhibitors</subject><subject>Kv1.3 Potassium Channel - metabolism</subject><subject>Kv1.3 Potassium Channel - physiology</subject><subject>Microglia - metabolism</subject><subject>Microglia - physiology</subject><subject>Neurons - physiology</subject><subject>Neurotoxins - antagonists & inhibitors</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peroxynitrous Acid - biosynthesis</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Respiratory Burst - physiology</subject><subject>Shaker Superfamily of Potassium Channels - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtP3DAQha2qVdnS_gWUp_Ypy_ievFRCKS23gtTCs-Ukk40rbwJ2wop_j1e7Avpkaeab46NzCDmisKSS8eOL69O7Pzd_q_MlZZLmIJcMQL4ji7QtcyaAvicLYBpyJbQ4IJ9i_AcAGqj-SA6oAl3yUi3Ij9-uCePKO5tdPtIlz6reDgP6mFXjMAVXzxNm05jd9uhCdlI776an7eDSeZ9d4xzGIX4mHzrrI37Zv4fk7ufpbXWWX938Oq9OrvJGsmLKle3KmqoGWCcKqxlFWevkUVrFukK1Le1EK1pkheVF29Vdg0BrLLAoBa9Zyw_J953u_VyvsW0wObTe3Ae3tuHJjNaZ_zeD681qfDRKsxSaSAJf9wJhfJgxTmbtYoPe2wHHORqqBRSMqwSqHZjCiTFg9_IJBbMtwLwUYLYFGJBmW0A6PHpr8fVsn3gCvu2A3q36jQto4tp6n3BqNpsNk4ZToykv-TP3spDV</recordid><startdate>20050803</startdate><enddate>20050803</enddate><creator>Fordyce, Christopher B</creator><creator>Jagasia, Ravi</creator><creator>Zhu, Xiaoping</creator><creator>Schlichter, Lyanne C</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20050803</creationdate><title>Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons</title><author>Fordyce, Christopher B ; Jagasia, Ravi ; Zhu, Xiaoping ; Schlichter, Lyanne C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-6af9b16c02f48a721e5b70275a62f86dd1f4d4de28a38dfbfce01be8e8943b2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Cell Death - physiology</topic><topic>Cells, Cultured</topic><topic>Cellular/Molecular</topic><topic>Electric Conductivity</topic><topic>Enzyme Activation - physiology</topic><topic>Kv1.3 Potassium Channel - antagonists & inhibitors</topic><topic>Kv1.3 Potassium Channel - metabolism</topic><topic>Kv1.3 Potassium Channel - physiology</topic><topic>Microglia - metabolism</topic><topic>Microglia - physiology</topic><topic>Neurons - physiology</topic><topic>Neurotoxins - antagonists & inhibitors</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peroxynitrous Acid - biosynthesis</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Respiratory Burst - physiology</topic><topic>Shaker Superfamily of Potassium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fordyce, Christopher B</creatorcontrib><creatorcontrib>Jagasia, Ravi</creatorcontrib><creatorcontrib>Zhu, Xiaoping</creatorcontrib><creatorcontrib>Schlichter, Lyanne C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fordyce, Christopher B</au><au>Jagasia, Ravi</au><au>Zhu, Xiaoping</au><au>Schlichter, Lyanne C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2005-08-03</date><risdate>2005</risdate><volume>25</volume><issue>31</issue><spage>7139</spage><epage>7149</epage><pages>7139-7149</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv1.3 (KCNA3) channels, which we showed previously are important for their proliferation and the NADPH-mediated respiratory burst. Here, we demonstrate the potential for targeting Kv1.3 channels to control CNS inflammation. Rat microglia express Kv1.2, Kv1.3, and Kv1.5 transcripts and protein, but only a Kv1.3 current was detected. When microglia were activated with lipopolysaccharide or a phorbol ester, only the Kv1.3 transcript (but not protein) expression changed. Using a Transwell cell-culture system that allows separate drug treatment of microglia or neurons, we found that activated microglia killed postnatal hippocampal neurons through a process that requires Kv1.3 channel activity in microglia but not in neurons. A major neurotoxic molecule in this model was peroxynitrite, which is formed from superoxide and nitric oxide; thus, it is significant that Kv1.3 channel blockers reduced the respiratory burst, but not nitric oxide production, by the activated microglia. In addressing the biochemical pathway affected by Kv1.3 channel activity, we found that Kv1.3 acts via a different cellular mechanism from the broad-spectrum drug minocycline, which is often used in animal models of neuroinflammation. That is, the dose-dependent reduction in neuron killing by minocycline corresponded with a reduction in p38 mitogen-activated protein kinase activation in microglia; however, none of the Kv1.3 blockers affected p38 activation.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>16079396</pmid><doi>10.1523/JNEUROSCI.1251-05.2005</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2005-08, Vol.25 (31), p.7139-7149 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725234 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Animals, Newborn Cell Death - physiology Cells, Cultured Cellular/Molecular Electric Conductivity Enzyme Activation - physiology Kv1.3 Potassium Channel - antagonists & inhibitors Kv1.3 Potassium Channel - metabolism Kv1.3 Potassium Channel - physiology Microglia - metabolism Microglia - physiology Neurons - physiology Neurotoxins - antagonists & inhibitors p38 Mitogen-Activated Protein Kinases - metabolism Peroxynitrous Acid - biosynthesis Rats Rats, Wistar Respiratory Burst - physiology Shaker Superfamily of Potassium Channels - metabolism |
title | Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microglia%20Kv1.3%20Channels%20Contribute%20to%20Their%20Ability%20to%20Kill%20Neurons&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Fordyce,%20Christopher%20B&rft.date=2005-08-03&rft.volume=25&rft.issue=31&rft.spage=7139&rft.epage=7149&rft.pages=7139-7149&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1251-05.2005&rft_dat=%3Cproquest_pubme%3E17408236%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17408236&rft_id=info:pmid/16079396&rfr_iscdi=true |