Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures

Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2005-04, Vol.25 (17), p.4260-4269
Hauptverfasser: Kovacs, Richard, Kardos, Julianna, Heinemann, Uwe, Kann, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4269
container_issue 17
container_start_page 4260
container_title The Journal of neuroscience
container_volume 25
creator Kovacs, Richard
Kardos, Julianna
Heinemann, Uwe
Kann, Oliver
description Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy.
doi_str_mv 10.1523/JNEUROSCI.4000-04.2005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17868306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-4d90afccbf03753a6e66c133a517a9193e7d1b2957447c6171512ce1ea77e9093</originalsourceid><addsrcrecordid>eNpVkd1u1DAQhS0EokvhFSpfwVUW2_HP5gYJhS3dqn-i7bXldZyNkROntkPEE_DaeLWrFq6s0fnmeGYOAGcYLTEj5efLm_Xjj9v7erOkCKEC0SVBiL0Ci6xWBaEIvwYLRAQqOBX0BLyL8WcGBcLiLTjBbMVWiJEF-HNtk9edH5pglYO1ctpOPdz4Aaqhgdem3wY1GHjnkxnSHnnIdbS5iPDcO-dnmLqsq5RMGKBv4Xq0zozJtj708JuNulNhZyK0A7yw4-i16sfsc--sNrCeXJqCie_Bm1a5aD4c31PweL5-qC-Kq9vvm_rrVaEZxamgTYVUq_W2RaVgpeKGc43LUjEsVIWr0ogGb0nFBKVCcywww0QbbJQQpkJVeQq-HHzHadubRuc9gnJyDLZX4bf0ysr_lcF2cud_SS4Iw5hlg49Hg-CfJhOT7POKxrl8JT9FicWKr0rEM8gPoA4-xmDa508wkvsM5XOGcp-hRFTuM8yNZ_-O-NJ2DC0Dnw5AZ3fdbIORsVfOZRzLeZ4Jy0NISjgq_wLBPKmU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17868306</pqid></control><display><type>article</type><title>Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kovacs, Richard ; Kardos, Julianna ; Heinemann, Uwe ; Kann, Oliver</creator><creatorcontrib>Kovacs, Richard ; Kardos, Julianna ; Heinemann, Uwe ; Kann, Oliver</creatorcontrib><description>Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.4000-04.2005</identifier><identifier>PMID: 15858052</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Animals, Newborn ; Calcium - metabolism ; Calcium Signaling - physiology ; Clonazepam - analogs &amp; derivatives ; Clonazepam - pharmacology ; Dose-Response Relationship, Radiation ; Electric Stimulation ; Epilepsy - physiopathology ; Fluorescent Dyes ; Hippocampus - cytology ; Imaging, Three-Dimensional - methods ; In Vitro Techniques ; Ion Exchange ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Microscopy, Confocal - methods ; Mitochondria - metabolism ; Neurobiology of Disease ; Neurons - cytology ; Neurons - drug effects ; Patch-Clamp Techniques - methods ; Rats ; Rats, Wistar ; Thiazepines - pharmacology</subject><ispartof>The Journal of neuroscience, 2005-04, Vol.25 (17), p.4260-4269</ispartof><rights>Copyright © 2005 Society for Neuroscience 0270-6474/05/254260-10.00/0 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-4d90afccbf03753a6e66c133a517a9193e7d1b2957447c6171512ce1ea77e9093</citedby><cites>FETCH-LOGICAL-c541t-4d90afccbf03753a6e66c133a517a9193e7d1b2957447c6171512ce1ea77e9093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725115/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725115/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15858052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kovacs, Richard</creatorcontrib><creatorcontrib>Kardos, Julianna</creatorcontrib><creatorcontrib>Heinemann, Uwe</creatorcontrib><creatorcontrib>Kann, Oliver</creatorcontrib><title>Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - physiology</subject><subject>Clonazepam - analogs &amp; derivatives</subject><subject>Clonazepam - pharmacology</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Electric Stimulation</subject><subject>Epilepsy - physiopathology</subject><subject>Fluorescent Dyes</subject><subject>Hippocampus - cytology</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>In Vitro Techniques</subject><subject>Ion Exchange</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Microscopy, Confocal - methods</subject><subject>Mitochondria - metabolism</subject><subject>Neurobiology of Disease</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Thiazepines - pharmacology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd1u1DAQhS0EokvhFSpfwVUW2_HP5gYJhS3dqn-i7bXldZyNkROntkPEE_DaeLWrFq6s0fnmeGYOAGcYLTEj5efLm_Xjj9v7erOkCKEC0SVBiL0Ci6xWBaEIvwYLRAQqOBX0BLyL8WcGBcLiLTjBbMVWiJEF-HNtk9edH5pglYO1ctpOPdz4Aaqhgdem3wY1GHjnkxnSHnnIdbS5iPDcO-dnmLqsq5RMGKBv4Xq0zozJtj708JuNulNhZyK0A7yw4-i16sfsc--sNrCeXJqCie_Bm1a5aD4c31PweL5-qC-Kq9vvm_rrVaEZxamgTYVUq_W2RaVgpeKGc43LUjEsVIWr0ogGb0nFBKVCcywww0QbbJQQpkJVeQq-HHzHadubRuc9gnJyDLZX4bf0ysr_lcF2cud_SS4Iw5hlg49Hg-CfJhOT7POKxrl8JT9FicWKr0rEM8gPoA4-xmDa508wkvsM5XOGcp-hRFTuM8yNZ_-O-NJ2DC0Dnw5AZ3fdbIORsVfOZRzLeZ4Jy0NISjgq_wLBPKmU</recordid><startdate>20050427</startdate><enddate>20050427</enddate><creator>Kovacs, Richard</creator><creator>Kardos, Julianna</creator><creator>Heinemann, Uwe</creator><creator>Kann, Oliver</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20050427</creationdate><title>Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures</title><author>Kovacs, Richard ; Kardos, Julianna ; Heinemann, Uwe ; Kann, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-4d90afccbf03753a6e66c133a517a9193e7d1b2957447c6171512ce1ea77e9093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - physiology</topic><topic>Clonazepam - analogs &amp; derivatives</topic><topic>Clonazepam - pharmacology</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Electric Stimulation</topic><topic>Epilepsy - physiopathology</topic><topic>Fluorescent Dyes</topic><topic>Hippocampus - cytology</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>In Vitro Techniques</topic><topic>Ion Exchange</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Microscopy, Confocal - methods</topic><topic>Mitochondria - metabolism</topic><topic>Neurobiology of Disease</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Thiazepines - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovacs, Richard</creatorcontrib><creatorcontrib>Kardos, Julianna</creatorcontrib><creatorcontrib>Heinemann, Uwe</creatorcontrib><creatorcontrib>Kann, Oliver</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovacs, Richard</au><au>Kardos, Julianna</au><au>Heinemann, Uwe</au><au>Kann, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2005-04-27</date><risdate>2005</risdate><volume>25</volume><issue>17</issue><spage>4260</spage><epage>4269</epage><pages>4260-4269</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>15858052</pmid><doi>10.1523/JNEUROSCI.4000-04.2005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2005-04, Vol.25 (17), p.4260-4269
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725115
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Animals, Newborn
Calcium - metabolism
Calcium Signaling - physiology
Clonazepam - analogs & derivatives
Clonazepam - pharmacology
Dose-Response Relationship, Radiation
Electric Stimulation
Epilepsy - physiopathology
Fluorescent Dyes
Hippocampus - cytology
Imaging, Three-Dimensional - methods
In Vitro Techniques
Ion Exchange
Membrane Potentials - drug effects
Membrane Potentials - physiology
Microscopy, Confocal - methods
Mitochondria - metabolism
Neurobiology of Disease
Neurons - cytology
Neurons - drug effects
Patch-Clamp Techniques - methods
Rats
Rats, Wistar
Thiazepines - pharmacology
title Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Calcium%20Ion%20and%20Membrane%20Potential%20Transients%20Follow%20the%20Pattern%20of%20Epileptiform%20Discharges%20in%20Hippocampal%20Slice%20Cultures&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Kovacs,%20Richard&rft.date=2005-04-27&rft.volume=25&rft.issue=17&rft.spage=4260&rft.epage=4269&rft.pages=4260-4269&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.4000-04.2005&rft_dat=%3Cproquest_pubme%3E17868306%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17868306&rft_id=info:pmid/15858052&rfr_iscdi=true