Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures
Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning mi...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2005-04, Vol.25 (17), p.4260-4269 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4269 |
---|---|
container_issue | 17 |
container_start_page | 4260 |
container_title | The Journal of neuroscience |
container_volume | 25 |
creator | Kovacs, Richard Kardos, Julianna Heinemann, Uwe Kann, Oliver |
description | Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy. |
doi_str_mv | 10.1523/JNEUROSCI.4000-04.2005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17868306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-4d90afccbf03753a6e66c133a517a9193e7d1b2957447c6171512ce1ea77e9093</originalsourceid><addsrcrecordid>eNpVkd1u1DAQhS0EokvhFSpfwVUW2_HP5gYJhS3dqn-i7bXldZyNkROntkPEE_DaeLWrFq6s0fnmeGYOAGcYLTEj5efLm_Xjj9v7erOkCKEC0SVBiL0Ci6xWBaEIvwYLRAQqOBX0BLyL8WcGBcLiLTjBbMVWiJEF-HNtk9edH5pglYO1ctpOPdz4Aaqhgdem3wY1GHjnkxnSHnnIdbS5iPDcO-dnmLqsq5RMGKBv4Xq0zozJtj708JuNulNhZyK0A7yw4-i16sfsc--sNrCeXJqCie_Bm1a5aD4c31PweL5-qC-Kq9vvm_rrVaEZxamgTYVUq_W2RaVgpeKGc43LUjEsVIWr0ogGb0nFBKVCcywww0QbbJQQpkJVeQq-HHzHadubRuc9gnJyDLZX4bf0ysr_lcF2cud_SS4Iw5hlg49Hg-CfJhOT7POKxrl8JT9FicWKr0rEM8gPoA4-xmDa508wkvsM5XOGcp-hRFTuM8yNZ_-O-NJ2DC0Dnw5AZ3fdbIORsVfOZRzLeZ4Jy0NISjgq_wLBPKmU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17868306</pqid></control><display><type>article</type><title>Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kovacs, Richard ; Kardos, Julianna ; Heinemann, Uwe ; Kann, Oliver</creator><creatorcontrib>Kovacs, Richard ; Kardos, Julianna ; Heinemann, Uwe ; Kann, Oliver</creatorcontrib><description>Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.4000-04.2005</identifier><identifier>PMID: 15858052</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Animals, Newborn ; Calcium - metabolism ; Calcium Signaling - physiology ; Clonazepam - analogs & derivatives ; Clonazepam - pharmacology ; Dose-Response Relationship, Radiation ; Electric Stimulation ; Epilepsy - physiopathology ; Fluorescent Dyes ; Hippocampus - cytology ; Imaging, Three-Dimensional - methods ; In Vitro Techniques ; Ion Exchange ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Microscopy, Confocal - methods ; Mitochondria - metabolism ; Neurobiology of Disease ; Neurons - cytology ; Neurons - drug effects ; Patch-Clamp Techniques - methods ; Rats ; Rats, Wistar ; Thiazepines - pharmacology</subject><ispartof>The Journal of neuroscience, 2005-04, Vol.25 (17), p.4260-4269</ispartof><rights>Copyright © 2005 Society for Neuroscience 0270-6474/05/254260-10.00/0 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-4d90afccbf03753a6e66c133a517a9193e7d1b2957447c6171512ce1ea77e9093</citedby><cites>FETCH-LOGICAL-c541t-4d90afccbf03753a6e66c133a517a9193e7d1b2957447c6171512ce1ea77e9093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725115/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725115/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15858052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kovacs, Richard</creatorcontrib><creatorcontrib>Kardos, Julianna</creatorcontrib><creatorcontrib>Heinemann, Uwe</creatorcontrib><creatorcontrib>Kann, Oliver</creatorcontrib><title>Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - physiology</subject><subject>Clonazepam - analogs & derivatives</subject><subject>Clonazepam - pharmacology</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Electric Stimulation</subject><subject>Epilepsy - physiopathology</subject><subject>Fluorescent Dyes</subject><subject>Hippocampus - cytology</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>In Vitro Techniques</subject><subject>Ion Exchange</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Microscopy, Confocal - methods</subject><subject>Mitochondria - metabolism</subject><subject>Neurobiology of Disease</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Thiazepines - pharmacology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd1u1DAQhS0EokvhFSpfwVUW2_HP5gYJhS3dqn-i7bXldZyNkROntkPEE_DaeLWrFq6s0fnmeGYOAGcYLTEj5efLm_Xjj9v7erOkCKEC0SVBiL0Ci6xWBaEIvwYLRAQqOBX0BLyL8WcGBcLiLTjBbMVWiJEF-HNtk9edH5pglYO1ctpOPdz4Aaqhgdem3wY1GHjnkxnSHnnIdbS5iPDcO-dnmLqsq5RMGKBv4Xq0zozJtj708JuNulNhZyK0A7yw4-i16sfsc--sNrCeXJqCie_Bm1a5aD4c31PweL5-qC-Kq9vvm_rrVaEZxamgTYVUq_W2RaVgpeKGc43LUjEsVIWr0ogGb0nFBKVCcywww0QbbJQQpkJVeQq-HHzHadubRuc9gnJyDLZX4bf0ysr_lcF2cud_SS4Iw5hlg49Hg-CfJhOT7POKxrl8JT9FicWKr0rEM8gPoA4-xmDa508wkvsM5XOGcp-hRFTuM8yNZ_-O-NJ2DC0Dnw5AZ3fdbIORsVfOZRzLeZ4Jy0NISjgq_wLBPKmU</recordid><startdate>20050427</startdate><enddate>20050427</enddate><creator>Kovacs, Richard</creator><creator>Kardos, Julianna</creator><creator>Heinemann, Uwe</creator><creator>Kann, Oliver</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20050427</creationdate><title>Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures</title><author>Kovacs, Richard ; Kardos, Julianna ; Heinemann, Uwe ; Kann, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-4d90afccbf03753a6e66c133a517a9193e7d1b2957447c6171512ce1ea77e9093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - physiology</topic><topic>Clonazepam - analogs & derivatives</topic><topic>Clonazepam - pharmacology</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Electric Stimulation</topic><topic>Epilepsy - physiopathology</topic><topic>Fluorescent Dyes</topic><topic>Hippocampus - cytology</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>In Vitro Techniques</topic><topic>Ion Exchange</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Microscopy, Confocal - methods</topic><topic>Mitochondria - metabolism</topic><topic>Neurobiology of Disease</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Thiazepines - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovacs, Richard</creatorcontrib><creatorcontrib>Kardos, Julianna</creatorcontrib><creatorcontrib>Heinemann, Uwe</creatorcontrib><creatorcontrib>Kann, Oliver</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovacs, Richard</au><au>Kardos, Julianna</au><au>Heinemann, Uwe</au><au>Kann, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2005-04-27</date><risdate>2005</risdate><volume>25</volume><issue>17</issue><spage>4260</spage><epage>4269</epage><pages>4260-4269</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>15858052</pmid><doi>10.1523/JNEUROSCI.4000-04.2005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2005-04, Vol.25 (17), p.4260-4269 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725115 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Animals, Newborn Calcium - metabolism Calcium Signaling - physiology Clonazepam - analogs & derivatives Clonazepam - pharmacology Dose-Response Relationship, Radiation Electric Stimulation Epilepsy - physiopathology Fluorescent Dyes Hippocampus - cytology Imaging, Three-Dimensional - methods In Vitro Techniques Ion Exchange Membrane Potentials - drug effects Membrane Potentials - physiology Microscopy, Confocal - methods Mitochondria - metabolism Neurobiology of Disease Neurons - cytology Neurons - drug effects Patch-Clamp Techniques - methods Rats Rats, Wistar Thiazepines - pharmacology |
title | Mitochondrial Calcium Ion and Membrane Potential Transients Follow the Pattern of Epileptiform Discharges in Hippocampal Slice Cultures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Calcium%20Ion%20and%20Membrane%20Potential%20Transients%20Follow%20the%20Pattern%20of%20Epileptiform%20Discharges%20in%20Hippocampal%20Slice%20Cultures&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Kovacs,%20Richard&rft.date=2005-04-27&rft.volume=25&rft.issue=17&rft.spage=4260&rft.epage=4269&rft.pages=4260-4269&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.4000-04.2005&rft_dat=%3Cproquest_pubme%3E17868306%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17868306&rft_id=info:pmid/15858052&rfr_iscdi=true |