Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains
How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing (STEC) and enteropathogenic (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. T...
Gespeichert in:
Veröffentlicht in: | Genome research 2019-09, Vol.29 (9), p.1495-1505 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1505 |
---|---|
container_issue | 9 |
container_start_page | 1495 |
container_title | Genome research |
container_volume | 29 |
creator | Arimizu, Yoko Kirino, Yumi Sato, Mitsuhiko P Uno, Koichi Sato, Toshio Gotoh, Yasuhiro Auvray, Frédéric Brugere, Hubert Oswald, Eric Mainil, Jacques G Anklam, Kelly S Döpfer, Dörte Yoshino, Shuji Ooka, Tadasuke Tanizawa, Yasuhiro Nakamura, Yasukazu Iguchi, Atsushi Morita-Ishihara, Tomoko Ohnishi, Makoto Akashi, Koichi Hayashi, Tetsuya Ogura, Yoshitoshi |
description | How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing
(STEC) and enteropathogenic
(EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal
are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal
with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in
and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these
strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens. |
doi_str_mv | 10.1101/gr.249268.119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6724679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284557200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-647273b3adfaf81e63a03130717f3fa8f58fbc381b8017cd396d64d68ddd04693</originalsourceid><addsrcrecordid>eNpdksFu1DAQhiMEou3CkSuyxIUestix4zgXpKpaKNJKXOBsTZxJ4iqxFzuJ1EfkrfB2lwp6smfm88w_48myd4xuGaPsUx-2hagLqZJZv8guWSnqvBSyfpnuVKm8piW7yK5ivKeUcqHU6-yCM8FrWdPL7PceQo95NDAi6dH5CQk4GB-ijcR3pPGrdUiMnyZ0EUayi2bAYM1gIXlHSwKuCGMk8wDzGc-hhcOMLdltT8yYnNBjJBCQRAwJ6glEgqsfl9l6B-GBRL8Eg49V5wEJTpiUOYNHx7BM4Ih1M8bZJnnkAPPgU9gaEucA1sU32asu6cC353OT_fyy-3F7l--_f_12e7PPjRD1nEtRFRVvOLQddIqh5EA547RiVcc7UF2pusZwxRpFWWXaNKdWilaqtm1pGivfZJ9PeQ9LM2Fr0KX6oz4EO6UutAer_484O-jer1pWhZDVMcH1KcHw7NndzV4ffbSQSaJiK0vsx3Ox4H8tqXk92WhwHMGhX6IuCiXKsirSz26yD8_Q-zTQNKtHSslKCVokKj9RJvgYA3ZPChjVx4XSfdCnhUrmUez7f7t9ov9uEP8Dw33LGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288678402</pqid></control><display><type>article</type><title>Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Arimizu, Yoko ; Kirino, Yumi ; Sato, Mitsuhiko P ; Uno, Koichi ; Sato, Toshio ; Gotoh, Yasuhiro ; Auvray, Frédéric ; Brugere, Hubert ; Oswald, Eric ; Mainil, Jacques G ; Anklam, Kelly S ; Döpfer, Dörte ; Yoshino, Shuji ; Ooka, Tadasuke ; Tanizawa, Yasuhiro ; Nakamura, Yasukazu ; Iguchi, Atsushi ; Morita-Ishihara, Tomoko ; Ohnishi, Makoto ; Akashi, Koichi ; Hayashi, Tetsuya ; Ogura, Yoshitoshi</creator><creatorcontrib>Arimizu, Yoko ; Kirino, Yumi ; Sato, Mitsuhiko P ; Uno, Koichi ; Sato, Toshio ; Gotoh, Yasuhiro ; Auvray, Frédéric ; Brugere, Hubert ; Oswald, Eric ; Mainil, Jacques G ; Anklam, Kelly S ; Döpfer, Dörte ; Yoshino, Shuji ; Ooka, Tadasuke ; Tanizawa, Yasuhiro ; Nakamura, Yasukazu ; Iguchi, Atsushi ; Morita-Ishihara, Tomoko ; Ohnishi, Makoto ; Akashi, Koichi ; Hayashi, Tetsuya ; Ogura, Yoshitoshi</creatorcontrib><description>How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing
(STEC) and enteropathogenic
(EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal
are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal
with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in
and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these
strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.249268.119</identifier><identifier>PMID: 31439690</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animal biology ; Animals ; Biotechnology ; Cattle ; Diarrhea ; E coli ; Enteropathogenic Escherichia coli - classification ; Enteropathogenic Escherichia coli - genetics ; Escherichia coli ; Escherichia coli - classification ; Escherichia coli - genetics ; Escherichia coli - pathogenicity ; Escherichia coli Infections - microbiology ; Escherichia coli Proteins - genetics ; Evolution, Molecular ; Foodborne pathogens ; Gene Regulatory Networks ; Genome, Bacterial ; Genomes ; Hemolytic uremic syndrome ; Humans ; Intestine ; Life Sciences ; Pathogens ; Phylogeny ; Pili ; Shiga toxin ; Shiga-Toxigenic Escherichia coli - classification ; Shiga-Toxigenic Escherichia coli - genetics ; Shiga-Toxigenic Escherichia coli - pathogenicity ; Symbiosis ; Veterinary medicine and animal Health ; Virulence ; Virulence Factors - genetics ; Whole Genome Sequencing - methods</subject><ispartof>Genome research, 2019-09, Vol.29 (9), p.1495-1505</ispartof><rights>2019 Arimizu et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Sep 2019</rights><rights>Attribution - NonCommercial</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-647273b3adfaf81e63a03130717f3fa8f58fbc381b8017cd396d64d68ddd04693</citedby><cites>FETCH-LOGICAL-c449t-647273b3adfaf81e63a03130717f3fa8f58fbc381b8017cd396d64d68ddd04693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724679/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724679/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31439690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02627381$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arimizu, Yoko</creatorcontrib><creatorcontrib>Kirino, Yumi</creatorcontrib><creatorcontrib>Sato, Mitsuhiko P</creatorcontrib><creatorcontrib>Uno, Koichi</creatorcontrib><creatorcontrib>Sato, Toshio</creatorcontrib><creatorcontrib>Gotoh, Yasuhiro</creatorcontrib><creatorcontrib>Auvray, Frédéric</creatorcontrib><creatorcontrib>Brugere, Hubert</creatorcontrib><creatorcontrib>Oswald, Eric</creatorcontrib><creatorcontrib>Mainil, Jacques G</creatorcontrib><creatorcontrib>Anklam, Kelly S</creatorcontrib><creatorcontrib>Döpfer, Dörte</creatorcontrib><creatorcontrib>Yoshino, Shuji</creatorcontrib><creatorcontrib>Ooka, Tadasuke</creatorcontrib><creatorcontrib>Tanizawa, Yasuhiro</creatorcontrib><creatorcontrib>Nakamura, Yasukazu</creatorcontrib><creatorcontrib>Iguchi, Atsushi</creatorcontrib><creatorcontrib>Morita-Ishihara, Tomoko</creatorcontrib><creatorcontrib>Ohnishi, Makoto</creatorcontrib><creatorcontrib>Akashi, Koichi</creatorcontrib><creatorcontrib>Hayashi, Tetsuya</creatorcontrib><creatorcontrib>Ogura, Yoshitoshi</creatorcontrib><title>Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing
(STEC) and enteropathogenic
(EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal
are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal
with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in
and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these
strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.</description><subject>Animal biology</subject><subject>Animals</subject><subject>Biotechnology</subject><subject>Cattle</subject><subject>Diarrhea</subject><subject>E coli</subject><subject>Enteropathogenic Escherichia coli - classification</subject><subject>Enteropathogenic Escherichia coli - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - classification</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - pathogenicity</subject><subject>Escherichia coli Infections - microbiology</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Evolution, Molecular</subject><subject>Foodborne pathogens</subject><subject>Gene Regulatory Networks</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Hemolytic uremic syndrome</subject><subject>Humans</subject><subject>Intestine</subject><subject>Life Sciences</subject><subject>Pathogens</subject><subject>Phylogeny</subject><subject>Pili</subject><subject>Shiga toxin</subject><subject>Shiga-Toxigenic Escherichia coli - classification</subject><subject>Shiga-Toxigenic Escherichia coli - genetics</subject><subject>Shiga-Toxigenic Escherichia coli - pathogenicity</subject><subject>Symbiosis</subject><subject>Veterinary medicine and animal Health</subject><subject>Virulence</subject><subject>Virulence Factors - genetics</subject><subject>Whole Genome Sequencing - methods</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdksFu1DAQhiMEou3CkSuyxIUestix4zgXpKpaKNJKXOBsTZxJ4iqxFzuJ1EfkrfB2lwp6smfm88w_48myd4xuGaPsUx-2hagLqZJZv8guWSnqvBSyfpnuVKm8piW7yK5ivKeUcqHU6-yCM8FrWdPL7PceQo95NDAi6dH5CQk4GB-ijcR3pPGrdUiMnyZ0EUayi2bAYM1gIXlHSwKuCGMk8wDzGc-hhcOMLdltT8yYnNBjJBCQRAwJ6glEgqsfl9l6B-GBRL8Eg49V5wEJTpiUOYNHx7BM4Ih1M8bZJnnkAPPgU9gaEucA1sU32asu6cC353OT_fyy-3F7l--_f_12e7PPjRD1nEtRFRVvOLQddIqh5EA547RiVcc7UF2pusZwxRpFWWXaNKdWilaqtm1pGivfZJ9PeQ9LM2Fr0KX6oz4EO6UutAer_484O-jer1pWhZDVMcH1KcHw7NndzV4ffbSQSaJiK0vsx3Ox4H8tqXk92WhwHMGhX6IuCiXKsirSz26yD8_Q-zTQNKtHSslKCVokKj9RJvgYA3ZPChjVx4XSfdCnhUrmUez7f7t9ov9uEP8Dw33LGw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Arimizu, Yoko</creator><creator>Kirino, Yumi</creator><creator>Sato, Mitsuhiko P</creator><creator>Uno, Koichi</creator><creator>Sato, Toshio</creator><creator>Gotoh, Yasuhiro</creator><creator>Auvray, Frédéric</creator><creator>Brugere, Hubert</creator><creator>Oswald, Eric</creator><creator>Mainil, Jacques G</creator><creator>Anklam, Kelly S</creator><creator>Döpfer, Dörte</creator><creator>Yoshino, Shuji</creator><creator>Ooka, Tadasuke</creator><creator>Tanizawa, Yasuhiro</creator><creator>Nakamura, Yasukazu</creator><creator>Iguchi, Atsushi</creator><creator>Morita-Ishihara, Tomoko</creator><creator>Ohnishi, Makoto</creator><creator>Akashi, Koichi</creator><creator>Hayashi, Tetsuya</creator><creator>Ogura, Yoshitoshi</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20190901</creationdate><title>Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains</title><author>Arimizu, Yoko ; Kirino, Yumi ; Sato, Mitsuhiko P ; Uno, Koichi ; Sato, Toshio ; Gotoh, Yasuhiro ; Auvray, Frédéric ; Brugere, Hubert ; Oswald, Eric ; Mainil, Jacques G ; Anklam, Kelly S ; Döpfer, Dörte ; Yoshino, Shuji ; Ooka, Tadasuke ; Tanizawa, Yasuhiro ; Nakamura, Yasukazu ; Iguchi, Atsushi ; Morita-Ishihara, Tomoko ; Ohnishi, Makoto ; Akashi, Koichi ; Hayashi, Tetsuya ; Ogura, Yoshitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-647273b3adfaf81e63a03130717f3fa8f58fbc381b8017cd396d64d68ddd04693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal biology</topic><topic>Animals</topic><topic>Biotechnology</topic><topic>Cattle</topic><topic>Diarrhea</topic><topic>E coli</topic><topic>Enteropathogenic Escherichia coli - classification</topic><topic>Enteropathogenic Escherichia coli - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - classification</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - pathogenicity</topic><topic>Escherichia coli Infections - microbiology</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Evolution, Molecular</topic><topic>Foodborne pathogens</topic><topic>Gene Regulatory Networks</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Hemolytic uremic syndrome</topic><topic>Humans</topic><topic>Intestine</topic><topic>Life Sciences</topic><topic>Pathogens</topic><topic>Phylogeny</topic><topic>Pili</topic><topic>Shiga toxin</topic><topic>Shiga-Toxigenic Escherichia coli - classification</topic><topic>Shiga-Toxigenic Escherichia coli - genetics</topic><topic>Shiga-Toxigenic Escherichia coli - pathogenicity</topic><topic>Symbiosis</topic><topic>Veterinary medicine and animal Health</topic><topic>Virulence</topic><topic>Virulence Factors - genetics</topic><topic>Whole Genome Sequencing - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arimizu, Yoko</creatorcontrib><creatorcontrib>Kirino, Yumi</creatorcontrib><creatorcontrib>Sato, Mitsuhiko P</creatorcontrib><creatorcontrib>Uno, Koichi</creatorcontrib><creatorcontrib>Sato, Toshio</creatorcontrib><creatorcontrib>Gotoh, Yasuhiro</creatorcontrib><creatorcontrib>Auvray, Frédéric</creatorcontrib><creatorcontrib>Brugere, Hubert</creatorcontrib><creatorcontrib>Oswald, Eric</creatorcontrib><creatorcontrib>Mainil, Jacques G</creatorcontrib><creatorcontrib>Anklam, Kelly S</creatorcontrib><creatorcontrib>Döpfer, Dörte</creatorcontrib><creatorcontrib>Yoshino, Shuji</creatorcontrib><creatorcontrib>Ooka, Tadasuke</creatorcontrib><creatorcontrib>Tanizawa, Yasuhiro</creatorcontrib><creatorcontrib>Nakamura, Yasukazu</creatorcontrib><creatorcontrib>Iguchi, Atsushi</creatorcontrib><creatorcontrib>Morita-Ishihara, Tomoko</creatorcontrib><creatorcontrib>Ohnishi, Makoto</creatorcontrib><creatorcontrib>Akashi, Koichi</creatorcontrib><creatorcontrib>Hayashi, Tetsuya</creatorcontrib><creatorcontrib>Ogura, Yoshitoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arimizu, Yoko</au><au>Kirino, Yumi</au><au>Sato, Mitsuhiko P</au><au>Uno, Koichi</au><au>Sato, Toshio</au><au>Gotoh, Yasuhiro</au><au>Auvray, Frédéric</au><au>Brugere, Hubert</au><au>Oswald, Eric</au><au>Mainil, Jacques G</au><au>Anklam, Kelly S</au><au>Döpfer, Dörte</au><au>Yoshino, Shuji</au><au>Ooka, Tadasuke</au><au>Tanizawa, Yasuhiro</au><au>Nakamura, Yasukazu</au><au>Iguchi, Atsushi</au><au>Morita-Ishihara, Tomoko</au><au>Ohnishi, Makoto</au><au>Akashi, Koichi</au><au>Hayashi, Tetsuya</au><au>Ogura, Yoshitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>29</volume><issue>9</issue><spage>1495</spage><epage>1505</epage><pages>1495-1505</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing
(STEC) and enteropathogenic
(EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal
are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal
with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in
and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these
strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>31439690</pmid><doi>10.1101/gr.249268.119</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2019-09, Vol.29 (9), p.1495-1505 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6724679 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Animal biology Animals Biotechnology Cattle Diarrhea E coli Enteropathogenic Escherichia coli - classification Enteropathogenic Escherichia coli - genetics Escherichia coli Escherichia coli - classification Escherichia coli - genetics Escherichia coli - pathogenicity Escherichia coli Infections - microbiology Escherichia coli Proteins - genetics Evolution, Molecular Foodborne pathogens Gene Regulatory Networks Genome, Bacterial Genomes Hemolytic uremic syndrome Humans Intestine Life Sciences Pathogens Phylogeny Pili Shiga toxin Shiga-Toxigenic Escherichia coli - classification Shiga-Toxigenic Escherichia coli - genetics Shiga-Toxigenic Escherichia coli - pathogenicity Symbiosis Veterinary medicine and animal Health Virulence Virulence Factors - genetics Whole Genome Sequencing - methods |
title | Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20genome%20analysis%20of%20bovine%20commensal%20Escherichia%20coli%20reveals%20that%20bovine-adapted%20E.%20coli%20lineages%20are%20serving%20as%20evolutionary%20sources%20of%20the%20emergence%20of%20human%20intestinal%20pathogenic%20strains&rft.jtitle=Genome%20research&rft.au=Arimizu,%20Yoko&rft.date=2019-09-01&rft.volume=29&rft.issue=9&rft.spage=1495&rft.epage=1505&rft.pages=1495-1505&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.249268.119&rft_dat=%3Cproquest_pubme%3E2284557200%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288678402&rft_id=info:pmid/31439690&rfr_iscdi=true |