Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains

How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing (STEC) and enteropathogenic (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome research 2019-09, Vol.29 (9), p.1495-1505
Hauptverfasser: Arimizu, Yoko, Kirino, Yumi, Sato, Mitsuhiko P, Uno, Koichi, Sato, Toshio, Gotoh, Yasuhiro, Auvray, Frédéric, Brugere, Hubert, Oswald, Eric, Mainil, Jacques G, Anklam, Kelly S, Döpfer, Dörte, Yoshino, Shuji, Ooka, Tadasuke, Tanizawa, Yasuhiro, Nakamura, Yasukazu, Iguchi, Atsushi, Morita-Ishihara, Tomoko, Ohnishi, Makoto, Akashi, Koichi, Hayashi, Tetsuya, Ogura, Yoshitoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1505
container_issue 9
container_start_page 1495
container_title Genome research
container_volume 29
creator Arimizu, Yoko
Kirino, Yumi
Sato, Mitsuhiko P
Uno, Koichi
Sato, Toshio
Gotoh, Yasuhiro
Auvray, Frédéric
Brugere, Hubert
Oswald, Eric
Mainil, Jacques G
Anklam, Kelly S
Döpfer, Dörte
Yoshino, Shuji
Ooka, Tadasuke
Tanizawa, Yasuhiro
Nakamura, Yasukazu
Iguchi, Atsushi
Morita-Ishihara, Tomoko
Ohnishi, Makoto
Akashi, Koichi
Hayashi, Tetsuya
Ogura, Yoshitoshi
description How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing (STEC) and enteropathogenic (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.
doi_str_mv 10.1101/gr.249268.119
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6724679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284557200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-647273b3adfaf81e63a03130717f3fa8f58fbc381b8017cd396d64d68ddd04693</originalsourceid><addsrcrecordid>eNpdksFu1DAQhiMEou3CkSuyxIUestix4zgXpKpaKNJKXOBsTZxJ4iqxFzuJ1EfkrfB2lwp6smfm88w_48myd4xuGaPsUx-2hagLqZJZv8guWSnqvBSyfpnuVKm8piW7yK5ivKeUcqHU6-yCM8FrWdPL7PceQo95NDAi6dH5CQk4GB-ijcR3pPGrdUiMnyZ0EUayi2bAYM1gIXlHSwKuCGMk8wDzGc-hhcOMLdltT8yYnNBjJBCQRAwJ6glEgqsfl9l6B-GBRL8Eg49V5wEJTpiUOYNHx7BM4Ih1M8bZJnnkAPPgU9gaEucA1sU32asu6cC353OT_fyy-3F7l--_f_12e7PPjRD1nEtRFRVvOLQddIqh5EA547RiVcc7UF2pusZwxRpFWWXaNKdWilaqtm1pGivfZJ9PeQ9LM2Fr0KX6oz4EO6UutAer_484O-jer1pWhZDVMcH1KcHw7NndzV4ffbSQSaJiK0vsx3Ox4H8tqXk92WhwHMGhX6IuCiXKsirSz26yD8_Q-zTQNKtHSslKCVokKj9RJvgYA3ZPChjVx4XSfdCnhUrmUez7f7t9ov9uEP8Dw33LGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288678402</pqid></control><display><type>article</type><title>Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Arimizu, Yoko ; Kirino, Yumi ; Sato, Mitsuhiko P ; Uno, Koichi ; Sato, Toshio ; Gotoh, Yasuhiro ; Auvray, Frédéric ; Brugere, Hubert ; Oswald, Eric ; Mainil, Jacques G ; Anklam, Kelly S ; Döpfer, Dörte ; Yoshino, Shuji ; Ooka, Tadasuke ; Tanizawa, Yasuhiro ; Nakamura, Yasukazu ; Iguchi, Atsushi ; Morita-Ishihara, Tomoko ; Ohnishi, Makoto ; Akashi, Koichi ; Hayashi, Tetsuya ; Ogura, Yoshitoshi</creator><creatorcontrib>Arimizu, Yoko ; Kirino, Yumi ; Sato, Mitsuhiko P ; Uno, Koichi ; Sato, Toshio ; Gotoh, Yasuhiro ; Auvray, Frédéric ; Brugere, Hubert ; Oswald, Eric ; Mainil, Jacques G ; Anklam, Kelly S ; Döpfer, Dörte ; Yoshino, Shuji ; Ooka, Tadasuke ; Tanizawa, Yasuhiro ; Nakamura, Yasukazu ; Iguchi, Atsushi ; Morita-Ishihara, Tomoko ; Ohnishi, Makoto ; Akashi, Koichi ; Hayashi, Tetsuya ; Ogura, Yoshitoshi</creatorcontrib><description>How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing (STEC) and enteropathogenic (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.249268.119</identifier><identifier>PMID: 31439690</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animal biology ; Animals ; Biotechnology ; Cattle ; Diarrhea ; E coli ; Enteropathogenic Escherichia coli - classification ; Enteropathogenic Escherichia coli - genetics ; Escherichia coli ; Escherichia coli - classification ; Escherichia coli - genetics ; Escherichia coli - pathogenicity ; Escherichia coli Infections - microbiology ; Escherichia coli Proteins - genetics ; Evolution, Molecular ; Foodborne pathogens ; Gene Regulatory Networks ; Genome, Bacterial ; Genomes ; Hemolytic uremic syndrome ; Humans ; Intestine ; Life Sciences ; Pathogens ; Phylogeny ; Pili ; Shiga toxin ; Shiga-Toxigenic Escherichia coli - classification ; Shiga-Toxigenic Escherichia coli - genetics ; Shiga-Toxigenic Escherichia coli - pathogenicity ; Symbiosis ; Veterinary medicine and animal Health ; Virulence ; Virulence Factors - genetics ; Whole Genome Sequencing - methods</subject><ispartof>Genome research, 2019-09, Vol.29 (9), p.1495-1505</ispartof><rights>2019 Arimizu et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Sep 2019</rights><rights>Attribution - NonCommercial</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-647273b3adfaf81e63a03130717f3fa8f58fbc381b8017cd396d64d68ddd04693</citedby><cites>FETCH-LOGICAL-c449t-647273b3adfaf81e63a03130717f3fa8f58fbc381b8017cd396d64d68ddd04693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724679/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724679/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31439690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02627381$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arimizu, Yoko</creatorcontrib><creatorcontrib>Kirino, Yumi</creatorcontrib><creatorcontrib>Sato, Mitsuhiko P</creatorcontrib><creatorcontrib>Uno, Koichi</creatorcontrib><creatorcontrib>Sato, Toshio</creatorcontrib><creatorcontrib>Gotoh, Yasuhiro</creatorcontrib><creatorcontrib>Auvray, Frédéric</creatorcontrib><creatorcontrib>Brugere, Hubert</creatorcontrib><creatorcontrib>Oswald, Eric</creatorcontrib><creatorcontrib>Mainil, Jacques G</creatorcontrib><creatorcontrib>Anklam, Kelly S</creatorcontrib><creatorcontrib>Döpfer, Dörte</creatorcontrib><creatorcontrib>Yoshino, Shuji</creatorcontrib><creatorcontrib>Ooka, Tadasuke</creatorcontrib><creatorcontrib>Tanizawa, Yasuhiro</creatorcontrib><creatorcontrib>Nakamura, Yasukazu</creatorcontrib><creatorcontrib>Iguchi, Atsushi</creatorcontrib><creatorcontrib>Morita-Ishihara, Tomoko</creatorcontrib><creatorcontrib>Ohnishi, Makoto</creatorcontrib><creatorcontrib>Akashi, Koichi</creatorcontrib><creatorcontrib>Hayashi, Tetsuya</creatorcontrib><creatorcontrib>Ogura, Yoshitoshi</creatorcontrib><title>Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing (STEC) and enteropathogenic (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.</description><subject>Animal biology</subject><subject>Animals</subject><subject>Biotechnology</subject><subject>Cattle</subject><subject>Diarrhea</subject><subject>E coli</subject><subject>Enteropathogenic Escherichia coli - classification</subject><subject>Enteropathogenic Escherichia coli - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - classification</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - pathogenicity</subject><subject>Escherichia coli Infections - microbiology</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Evolution, Molecular</subject><subject>Foodborne pathogens</subject><subject>Gene Regulatory Networks</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Hemolytic uremic syndrome</subject><subject>Humans</subject><subject>Intestine</subject><subject>Life Sciences</subject><subject>Pathogens</subject><subject>Phylogeny</subject><subject>Pili</subject><subject>Shiga toxin</subject><subject>Shiga-Toxigenic Escherichia coli - classification</subject><subject>Shiga-Toxigenic Escherichia coli - genetics</subject><subject>Shiga-Toxigenic Escherichia coli - pathogenicity</subject><subject>Symbiosis</subject><subject>Veterinary medicine and animal Health</subject><subject>Virulence</subject><subject>Virulence Factors - genetics</subject><subject>Whole Genome Sequencing - methods</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdksFu1DAQhiMEou3CkSuyxIUestix4zgXpKpaKNJKXOBsTZxJ4iqxFzuJ1EfkrfB2lwp6smfm88w_48myd4xuGaPsUx-2hagLqZJZv8guWSnqvBSyfpnuVKm8piW7yK5ivKeUcqHU6-yCM8FrWdPL7PceQo95NDAi6dH5CQk4GB-ijcR3pPGrdUiMnyZ0EUayi2bAYM1gIXlHSwKuCGMk8wDzGc-hhcOMLdltT8yYnNBjJBCQRAwJ6glEgqsfl9l6B-GBRL8Eg49V5wEJTpiUOYNHx7BM4Ih1M8bZJnnkAPPgU9gaEucA1sU32asu6cC353OT_fyy-3F7l--_f_12e7PPjRD1nEtRFRVvOLQddIqh5EA547RiVcc7UF2pusZwxRpFWWXaNKdWilaqtm1pGivfZJ9PeQ9LM2Fr0KX6oz4EO6UutAer_484O-jer1pWhZDVMcH1KcHw7NndzV4ffbSQSaJiK0vsx3Ox4H8tqXk92WhwHMGhX6IuCiXKsirSz26yD8_Q-zTQNKtHSslKCVokKj9RJvgYA3ZPChjVx4XSfdCnhUrmUez7f7t9ov9uEP8Dw33LGw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Arimizu, Yoko</creator><creator>Kirino, Yumi</creator><creator>Sato, Mitsuhiko P</creator><creator>Uno, Koichi</creator><creator>Sato, Toshio</creator><creator>Gotoh, Yasuhiro</creator><creator>Auvray, Frédéric</creator><creator>Brugere, Hubert</creator><creator>Oswald, Eric</creator><creator>Mainil, Jacques G</creator><creator>Anklam, Kelly S</creator><creator>Döpfer, Dörte</creator><creator>Yoshino, Shuji</creator><creator>Ooka, Tadasuke</creator><creator>Tanizawa, Yasuhiro</creator><creator>Nakamura, Yasukazu</creator><creator>Iguchi, Atsushi</creator><creator>Morita-Ishihara, Tomoko</creator><creator>Ohnishi, Makoto</creator><creator>Akashi, Koichi</creator><creator>Hayashi, Tetsuya</creator><creator>Ogura, Yoshitoshi</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20190901</creationdate><title>Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains</title><author>Arimizu, Yoko ; Kirino, Yumi ; Sato, Mitsuhiko P ; Uno, Koichi ; Sato, Toshio ; Gotoh, Yasuhiro ; Auvray, Frédéric ; Brugere, Hubert ; Oswald, Eric ; Mainil, Jacques G ; Anklam, Kelly S ; Döpfer, Dörte ; Yoshino, Shuji ; Ooka, Tadasuke ; Tanizawa, Yasuhiro ; Nakamura, Yasukazu ; Iguchi, Atsushi ; Morita-Ishihara, Tomoko ; Ohnishi, Makoto ; Akashi, Koichi ; Hayashi, Tetsuya ; Ogura, Yoshitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-647273b3adfaf81e63a03130717f3fa8f58fbc381b8017cd396d64d68ddd04693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal biology</topic><topic>Animals</topic><topic>Biotechnology</topic><topic>Cattle</topic><topic>Diarrhea</topic><topic>E coli</topic><topic>Enteropathogenic Escherichia coli - classification</topic><topic>Enteropathogenic Escherichia coli - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - classification</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - pathogenicity</topic><topic>Escherichia coli Infections - microbiology</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Evolution, Molecular</topic><topic>Foodborne pathogens</topic><topic>Gene Regulatory Networks</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Hemolytic uremic syndrome</topic><topic>Humans</topic><topic>Intestine</topic><topic>Life Sciences</topic><topic>Pathogens</topic><topic>Phylogeny</topic><topic>Pili</topic><topic>Shiga toxin</topic><topic>Shiga-Toxigenic Escherichia coli - classification</topic><topic>Shiga-Toxigenic Escherichia coli - genetics</topic><topic>Shiga-Toxigenic Escherichia coli - pathogenicity</topic><topic>Symbiosis</topic><topic>Veterinary medicine and animal Health</topic><topic>Virulence</topic><topic>Virulence Factors - genetics</topic><topic>Whole Genome Sequencing - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arimizu, Yoko</creatorcontrib><creatorcontrib>Kirino, Yumi</creatorcontrib><creatorcontrib>Sato, Mitsuhiko P</creatorcontrib><creatorcontrib>Uno, Koichi</creatorcontrib><creatorcontrib>Sato, Toshio</creatorcontrib><creatorcontrib>Gotoh, Yasuhiro</creatorcontrib><creatorcontrib>Auvray, Frédéric</creatorcontrib><creatorcontrib>Brugere, Hubert</creatorcontrib><creatorcontrib>Oswald, Eric</creatorcontrib><creatorcontrib>Mainil, Jacques G</creatorcontrib><creatorcontrib>Anklam, Kelly S</creatorcontrib><creatorcontrib>Döpfer, Dörte</creatorcontrib><creatorcontrib>Yoshino, Shuji</creatorcontrib><creatorcontrib>Ooka, Tadasuke</creatorcontrib><creatorcontrib>Tanizawa, Yasuhiro</creatorcontrib><creatorcontrib>Nakamura, Yasukazu</creatorcontrib><creatorcontrib>Iguchi, Atsushi</creatorcontrib><creatorcontrib>Morita-Ishihara, Tomoko</creatorcontrib><creatorcontrib>Ohnishi, Makoto</creatorcontrib><creatorcontrib>Akashi, Koichi</creatorcontrib><creatorcontrib>Hayashi, Tetsuya</creatorcontrib><creatorcontrib>Ogura, Yoshitoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arimizu, Yoko</au><au>Kirino, Yumi</au><au>Sato, Mitsuhiko P</au><au>Uno, Koichi</au><au>Sato, Toshio</au><au>Gotoh, Yasuhiro</au><au>Auvray, Frédéric</au><au>Brugere, Hubert</au><au>Oswald, Eric</au><au>Mainil, Jacques G</au><au>Anklam, Kelly S</au><au>Döpfer, Dörte</au><au>Yoshino, Shuji</au><au>Ooka, Tadasuke</au><au>Tanizawa, Yasuhiro</au><au>Nakamura, Yasukazu</au><au>Iguchi, Atsushi</au><au>Morita-Ishihara, Tomoko</au><au>Ohnishi, Makoto</au><au>Akashi, Koichi</au><au>Hayashi, Tetsuya</au><au>Ogura, Yoshitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>29</volume><issue>9</issue><spage>1495</spage><epage>1505</epage><pages>1495-1505</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing (STEC) and enteropathogenic (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>31439690</pmid><doi>10.1101/gr.249268.119</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome research, 2019-09, Vol.29 (9), p.1495-1505
issn 1088-9051
1549-5469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6724679
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Animal biology
Animals
Biotechnology
Cattle
Diarrhea
E coli
Enteropathogenic Escherichia coli - classification
Enteropathogenic Escherichia coli - genetics
Escherichia coli
Escherichia coli - classification
Escherichia coli - genetics
Escherichia coli - pathogenicity
Escherichia coli Infections - microbiology
Escherichia coli Proteins - genetics
Evolution, Molecular
Foodborne pathogens
Gene Regulatory Networks
Genome, Bacterial
Genomes
Hemolytic uremic syndrome
Humans
Intestine
Life Sciences
Pathogens
Phylogeny
Pili
Shiga toxin
Shiga-Toxigenic Escherichia coli - classification
Shiga-Toxigenic Escherichia coli - genetics
Shiga-Toxigenic Escherichia coli - pathogenicity
Symbiosis
Veterinary medicine and animal Health
Virulence
Virulence Factors - genetics
Whole Genome Sequencing - methods
title Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20genome%20analysis%20of%20bovine%20commensal%20Escherichia%20coli%20reveals%20that%20bovine-adapted%20E.%20coli%20lineages%20are%20serving%20as%20evolutionary%20sources%20of%20the%20emergence%20of%20human%20intestinal%20pathogenic%20strains&rft.jtitle=Genome%20research&rft.au=Arimizu,%20Yoko&rft.date=2019-09-01&rft.volume=29&rft.issue=9&rft.spage=1495&rft.epage=1505&rft.pages=1495-1505&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.249268.119&rft_dat=%3Cproquest_pubme%3E2284557200%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288678402&rft_id=info:pmid/31439690&rfr_iscdi=true