FEM-Based Study of Precision Hard Turning of Stainless Steel 316L

This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2019-08, Vol.12 (16), p.2522
Hauptverfasser: Elkaseer, Ahmed, Abdelaziz, Ali, Saber, Mohammed, Nassef, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 2522
container_title Materials
container_volume 12
creator Elkaseer, Ahmed
Abdelaziz, Ali
Saber, Mohammed
Nassef, Ahmed
description This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning tests was carried out using tungsten carbide tools under similar cutting conditions to validate the results obtained from the FEM for the chipping process and at the same time to experimentally examine the generated surface roughness. These results helped in the analysis and understanding the chip formation process and the surface generation phenomena during the cutting process, especially on micro scale. Good agreement between experiments and FEM results was found, which confirmed that the cutting process was accurately simulated by the FEM and allowed the identification of the optimum process parameters to ensure high performance. Results obtained from the simulation revealed that, an applied feed equals to 0.75 of edge radius of new cutting tool is the optimal cutting conditions for stainless steel 316L. Moreover, the experimental results demonstrated that in contrast to conventional turning processes, a nonlinear relationship was found between the feed rate and obtainable surface roughness, with a minimum surface roughness obtained when the feed rate laid between 0.75 and 1.25 times the original cutting edge radius, for new and worn tools, respectively.
doi_str_mv 10.3390/ma12162522
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548684126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-e30e116b7700bb0c1e7854a30864c3ea91c9dc82be7dbd0f98f3913187a068a33</originalsourceid><addsrcrecordid>eNpdkUlLA0EQhRtRVGIu_gAZ8CLCaG_p5SJoSIwQUUg8Nz09NToyi3bPCPn3dkhc61IF9fF4VQ-hY4IvGNP4sraEEkFHlO6gQ6K1SInmfPfXfICGIbziWIwRRfU-OmCEaaWwPETX08l9emMD5Mmi6_NV0hbJowdXhrJtkpn1ebLsfVM2z-vNorNlU0EIcQKoEkbE_AjtFbYKMNz2AXqaTpbjWTp_uL0bX89Tx7nsUmAYCBGZlBhnGXYEpBpxy7AS3DGwmjidO0UzkHmW40KrgmkSDUuLhbKMDdDVRvetz2rIHTSdt5V582Vt_cq0tjR_N035Yp7bDyMkxZrLKHC2FfDtew-hM3UZHFSVbaDtg6FUEsWFkiqip__Q1zZ-IZ5n6IgroTihIlLnG8r5NgQPxbcZgs06HPMTToRPftv_Rr-iYJ9yM4c3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548684126</pqid></control><display><type>article</type><title>FEM-Based Study of Precision Hard Turning of Stainless Steel 316L</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Elkaseer, Ahmed ; Abdelaziz, Ali ; Saber, Mohammed ; Nassef, Ahmed</creator><creatorcontrib>Elkaseer, Ahmed ; Abdelaziz, Ali ; Saber, Mohammed ; Nassef, Ahmed</creatorcontrib><description>This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning tests was carried out using tungsten carbide tools under similar cutting conditions to validate the results obtained from the FEM for the chipping process and at the same time to experimentally examine the generated surface roughness. These results helped in the analysis and understanding the chip formation process and the surface generation phenomena during the cutting process, especially on micro scale. Good agreement between experiments and FEM results was found, which confirmed that the cutting process was accurately simulated by the FEM and allowed the identification of the optimum process parameters to ensure high performance. Results obtained from the simulation revealed that, an applied feed equals to 0.75 of edge radius of new cutting tool is the optimal cutting conditions for stainless steel 316L. Moreover, the experimental results demonstrated that in contrast to conventional turning processes, a nonlinear relationship was found between the feed rate and obtainable surface roughness, with a minimum surface roughness obtained when the feed rate laid between 0.75 and 1.25 times the original cutting edge radius, for new and worn tools, respectively.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12162522</identifier><identifier>PMID: 31398807</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Carbide tools ; Chip formation ; Chipping ; Cutting edge radius ; Cutting tools ; Feed rate ; Finite element method ; Heat ; Investigations ; Optimization ; Parameter identification ; Phosphate esters ; Process parameters ; Simulation ; Stainless steel ; Stainless steels ; Surface roughness ; Titanium alloys ; Tungsten carbide ; Turning (machining)</subject><ispartof>Materials, 2019-08, Vol.12 (16), p.2522</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-e30e116b7700bb0c1e7854a30864c3ea91c9dc82be7dbd0f98f3913187a068a33</citedby><cites>FETCH-LOGICAL-c447t-e30e116b7700bb0c1e7854a30864c3ea91c9dc82be7dbd0f98f3913187a068a33</cites><orcidid>0000-0003-4982-4679 ; 0000-0002-2500-3617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720947/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720947/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27906,27907,53773,53775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31398807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elkaseer, Ahmed</creatorcontrib><creatorcontrib>Abdelaziz, Ali</creatorcontrib><creatorcontrib>Saber, Mohammed</creatorcontrib><creatorcontrib>Nassef, Ahmed</creatorcontrib><title>FEM-Based Study of Precision Hard Turning of Stainless Steel 316L</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning tests was carried out using tungsten carbide tools under similar cutting conditions to validate the results obtained from the FEM for the chipping process and at the same time to experimentally examine the generated surface roughness. These results helped in the analysis and understanding the chip formation process and the surface generation phenomena during the cutting process, especially on micro scale. Good agreement between experiments and FEM results was found, which confirmed that the cutting process was accurately simulated by the FEM and allowed the identification of the optimum process parameters to ensure high performance. Results obtained from the simulation revealed that, an applied feed equals to 0.75 of edge radius of new cutting tool is the optimal cutting conditions for stainless steel 316L. Moreover, the experimental results demonstrated that in contrast to conventional turning processes, a nonlinear relationship was found between the feed rate and obtainable surface roughness, with a minimum surface roughness obtained when the feed rate laid between 0.75 and 1.25 times the original cutting edge radius, for new and worn tools, respectively.</description><subject>Accuracy</subject><subject>Carbide tools</subject><subject>Chip formation</subject><subject>Chipping</subject><subject>Cutting edge radius</subject><subject>Cutting tools</subject><subject>Feed rate</subject><subject>Finite element method</subject><subject>Heat</subject><subject>Investigations</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Phosphate esters</subject><subject>Process parameters</subject><subject>Simulation</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Surface roughness</subject><subject>Titanium alloys</subject><subject>Tungsten carbide</subject><subject>Turning (machining)</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUlLA0EQhRtRVGIu_gAZ8CLCaG_p5SJoSIwQUUg8Nz09NToyi3bPCPn3dkhc61IF9fF4VQ-hY4IvGNP4sraEEkFHlO6gQ6K1SInmfPfXfICGIbziWIwRRfU-OmCEaaWwPETX08l9emMD5Mmi6_NV0hbJowdXhrJtkpn1ebLsfVM2z-vNorNlU0EIcQKoEkbE_AjtFbYKMNz2AXqaTpbjWTp_uL0bX89Tx7nsUmAYCBGZlBhnGXYEpBpxy7AS3DGwmjidO0UzkHmW40KrgmkSDUuLhbKMDdDVRvetz2rIHTSdt5V582Vt_cq0tjR_N035Yp7bDyMkxZrLKHC2FfDtew-hM3UZHFSVbaDtg6FUEsWFkiqip__Q1zZ-IZ5n6IgroTihIlLnG8r5NgQPxbcZgs06HPMTToRPftv_Rr-iYJ9yM4c3</recordid><startdate>20190808</startdate><enddate>20190808</enddate><creator>Elkaseer, Ahmed</creator><creator>Abdelaziz, Ali</creator><creator>Saber, Mohammed</creator><creator>Nassef, Ahmed</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4982-4679</orcidid><orcidid>https://orcid.org/0000-0002-2500-3617</orcidid></search><sort><creationdate>20190808</creationdate><title>FEM-Based Study of Precision Hard Turning of Stainless Steel 316L</title><author>Elkaseer, Ahmed ; Abdelaziz, Ali ; Saber, Mohammed ; Nassef, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-e30e116b7700bb0c1e7854a30864c3ea91c9dc82be7dbd0f98f3913187a068a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Carbide tools</topic><topic>Chip formation</topic><topic>Chipping</topic><topic>Cutting edge radius</topic><topic>Cutting tools</topic><topic>Feed rate</topic><topic>Finite element method</topic><topic>Heat</topic><topic>Investigations</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Phosphate esters</topic><topic>Process parameters</topic><topic>Simulation</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Surface roughness</topic><topic>Titanium alloys</topic><topic>Tungsten carbide</topic><topic>Turning (machining)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elkaseer, Ahmed</creatorcontrib><creatorcontrib>Abdelaziz, Ali</creatorcontrib><creatorcontrib>Saber, Mohammed</creatorcontrib><creatorcontrib>Nassef, Ahmed</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elkaseer, Ahmed</au><au>Abdelaziz, Ali</au><au>Saber, Mohammed</au><au>Nassef, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FEM-Based Study of Precision Hard Turning of Stainless Steel 316L</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-08-08</date><risdate>2019</risdate><volume>12</volume><issue>16</issue><spage>2522</spage><pages>2522-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning tests was carried out using tungsten carbide tools under similar cutting conditions to validate the results obtained from the FEM for the chipping process and at the same time to experimentally examine the generated surface roughness. These results helped in the analysis and understanding the chip formation process and the surface generation phenomena during the cutting process, especially on micro scale. Good agreement between experiments and FEM results was found, which confirmed that the cutting process was accurately simulated by the FEM and allowed the identification of the optimum process parameters to ensure high performance. Results obtained from the simulation revealed that, an applied feed equals to 0.75 of edge radius of new cutting tool is the optimal cutting conditions for stainless steel 316L. Moreover, the experimental results demonstrated that in contrast to conventional turning processes, a nonlinear relationship was found between the feed rate and obtainable surface roughness, with a minimum surface roughness obtained when the feed rate laid between 0.75 and 1.25 times the original cutting edge radius, for new and worn tools, respectively.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31398807</pmid><doi>10.3390/ma12162522</doi><orcidid>https://orcid.org/0000-0003-4982-4679</orcidid><orcidid>https://orcid.org/0000-0002-2500-3617</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2019-08, Vol.12 (16), p.2522
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720947
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Carbide tools
Chip formation
Chipping
Cutting edge radius
Cutting tools
Feed rate
Finite element method
Heat
Investigations
Optimization
Parameter identification
Phosphate esters
Process parameters
Simulation
Stainless steel
Stainless steels
Surface roughness
Titanium alloys
Tungsten carbide
Turning (machining)
title FEM-Based Study of Precision Hard Turning of Stainless Steel 316L
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FEM-Based%20Study%20of%20Precision%20Hard%20Turning%20of%20Stainless%20Steel%20316L&rft.jtitle=Materials&rft.au=Elkaseer,%20Ahmed&rft.date=2019-08-08&rft.volume=12&rft.issue=16&rft.spage=2522&rft.pages=2522-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12162522&rft_dat=%3Cproquest_pubme%3E2548684126%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548684126&rft_id=info:pmid/31398807&rfr_iscdi=true