FEM-Based Study of Precision Hard Turning of Stainless Steel 316L
This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning...
Gespeichert in:
Veröffentlicht in: | Materials 2019-08, Vol.12 (16), p.2522 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 2522 |
container_title | Materials |
container_volume | 12 |
creator | Elkaseer, Ahmed Abdelaziz, Ali Saber, Mohammed Nassef, Ahmed |
description | This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning tests was carried out using tungsten carbide tools under similar cutting conditions to validate the results obtained from the FEM for the chipping process and at the same time to experimentally examine the generated surface roughness. These results helped in the analysis and understanding the chip formation process and the surface generation phenomena during the cutting process, especially on micro scale. Good agreement between experiments and FEM results was found, which confirmed that the cutting process was accurately simulated by the FEM and allowed the identification of the optimum process parameters to ensure high performance. Results obtained from the simulation revealed that, an applied feed equals to 0.75 of edge radius of new cutting tool is the optimal cutting conditions for stainless steel 316L. Moreover, the experimental results demonstrated that in contrast to conventional turning processes, a nonlinear relationship was found between the feed rate and obtainable surface roughness, with a minimum surface roughness obtained when the feed rate laid between 0.75 and 1.25 times the original cutting edge radius, for new and worn tools, respectively. |
doi_str_mv | 10.3390/ma12162522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548684126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-e30e116b7700bb0c1e7854a30864c3ea91c9dc82be7dbd0f98f3913187a068a33</originalsourceid><addsrcrecordid>eNpdkUlLA0EQhRtRVGIu_gAZ8CLCaG_p5SJoSIwQUUg8Nz09NToyi3bPCPn3dkhc61IF9fF4VQ-hY4IvGNP4sraEEkFHlO6gQ6K1SInmfPfXfICGIbziWIwRRfU-OmCEaaWwPETX08l9emMD5Mmi6_NV0hbJowdXhrJtkpn1ebLsfVM2z-vNorNlU0EIcQKoEkbE_AjtFbYKMNz2AXqaTpbjWTp_uL0bX89Tx7nsUmAYCBGZlBhnGXYEpBpxy7AS3DGwmjidO0UzkHmW40KrgmkSDUuLhbKMDdDVRvetz2rIHTSdt5V582Vt_cq0tjR_N035Yp7bDyMkxZrLKHC2FfDtew-hM3UZHFSVbaDtg6FUEsWFkiqip__Q1zZ-IZ5n6IgroTihIlLnG8r5NgQPxbcZgs06HPMTToRPftv_Rr-iYJ9yM4c3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548684126</pqid></control><display><type>article</type><title>FEM-Based Study of Precision Hard Turning of Stainless Steel 316L</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Elkaseer, Ahmed ; Abdelaziz, Ali ; Saber, Mohammed ; Nassef, Ahmed</creator><creatorcontrib>Elkaseer, Ahmed ; Abdelaziz, Ali ; Saber, Mohammed ; Nassef, Ahmed</creatorcontrib><description>This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning tests was carried out using tungsten carbide tools under similar cutting conditions to validate the results obtained from the FEM for the chipping process and at the same time to experimentally examine the generated surface roughness. These results helped in the analysis and understanding the chip formation process and the surface generation phenomena during the cutting process, especially on micro scale. Good agreement between experiments and FEM results was found, which confirmed that the cutting process was accurately simulated by the FEM and allowed the identification of the optimum process parameters to ensure high performance. Results obtained from the simulation revealed that, an applied feed equals to 0.75 of edge radius of new cutting tool is the optimal cutting conditions for stainless steel 316L. Moreover, the experimental results demonstrated that in contrast to conventional turning processes, a nonlinear relationship was found between the feed rate and obtainable surface roughness, with a minimum surface roughness obtained when the feed rate laid between 0.75 and 1.25 times the original cutting edge radius, for new and worn tools, respectively.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12162522</identifier><identifier>PMID: 31398807</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Carbide tools ; Chip formation ; Chipping ; Cutting edge radius ; Cutting tools ; Feed rate ; Finite element method ; Heat ; Investigations ; Optimization ; Parameter identification ; Phosphate esters ; Process parameters ; Simulation ; Stainless steel ; Stainless steels ; Surface roughness ; Titanium alloys ; Tungsten carbide ; Turning (machining)</subject><ispartof>Materials, 2019-08, Vol.12 (16), p.2522</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-e30e116b7700bb0c1e7854a30864c3ea91c9dc82be7dbd0f98f3913187a068a33</citedby><cites>FETCH-LOGICAL-c447t-e30e116b7700bb0c1e7854a30864c3ea91c9dc82be7dbd0f98f3913187a068a33</cites><orcidid>0000-0003-4982-4679 ; 0000-0002-2500-3617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720947/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720947/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27906,27907,53773,53775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31398807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elkaseer, Ahmed</creatorcontrib><creatorcontrib>Abdelaziz, Ali</creatorcontrib><creatorcontrib>Saber, Mohammed</creatorcontrib><creatorcontrib>Nassef, Ahmed</creatorcontrib><title>FEM-Based Study of Precision Hard Turning of Stainless Steel 316L</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning tests was carried out using tungsten carbide tools under similar cutting conditions to validate the results obtained from the FEM for the chipping process and at the same time to experimentally examine the generated surface roughness. These results helped in the analysis and understanding the chip formation process and the surface generation phenomena during the cutting process, especially on micro scale. Good agreement between experiments and FEM results was found, which confirmed that the cutting process was accurately simulated by the FEM and allowed the identification of the optimum process parameters to ensure high performance. Results obtained from the simulation revealed that, an applied feed equals to 0.75 of edge radius of new cutting tool is the optimal cutting conditions for stainless steel 316L. Moreover, the experimental results demonstrated that in contrast to conventional turning processes, a nonlinear relationship was found between the feed rate and obtainable surface roughness, with a minimum surface roughness obtained when the feed rate laid between 0.75 and 1.25 times the original cutting edge radius, for new and worn tools, respectively.</description><subject>Accuracy</subject><subject>Carbide tools</subject><subject>Chip formation</subject><subject>Chipping</subject><subject>Cutting edge radius</subject><subject>Cutting tools</subject><subject>Feed rate</subject><subject>Finite element method</subject><subject>Heat</subject><subject>Investigations</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Phosphate esters</subject><subject>Process parameters</subject><subject>Simulation</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Surface roughness</subject><subject>Titanium alloys</subject><subject>Tungsten carbide</subject><subject>Turning (machining)</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUlLA0EQhRtRVGIu_gAZ8CLCaG_p5SJoSIwQUUg8Nz09NToyi3bPCPn3dkhc61IF9fF4VQ-hY4IvGNP4sraEEkFHlO6gQ6K1SInmfPfXfICGIbziWIwRRfU-OmCEaaWwPETX08l9emMD5Mmi6_NV0hbJowdXhrJtkpn1ebLsfVM2z-vNorNlU0EIcQKoEkbE_AjtFbYKMNz2AXqaTpbjWTp_uL0bX89Tx7nsUmAYCBGZlBhnGXYEpBpxy7AS3DGwmjidO0UzkHmW40KrgmkSDUuLhbKMDdDVRvetz2rIHTSdt5V582Vt_cq0tjR_N035Yp7bDyMkxZrLKHC2FfDtew-hM3UZHFSVbaDtg6FUEsWFkiqip__Q1zZ-IZ5n6IgroTihIlLnG8r5NgQPxbcZgs06HPMTToRPftv_Rr-iYJ9yM4c3</recordid><startdate>20190808</startdate><enddate>20190808</enddate><creator>Elkaseer, Ahmed</creator><creator>Abdelaziz, Ali</creator><creator>Saber, Mohammed</creator><creator>Nassef, Ahmed</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4982-4679</orcidid><orcidid>https://orcid.org/0000-0002-2500-3617</orcidid></search><sort><creationdate>20190808</creationdate><title>FEM-Based Study of Precision Hard Turning of Stainless Steel 316L</title><author>Elkaseer, Ahmed ; Abdelaziz, Ali ; Saber, Mohammed ; Nassef, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-e30e116b7700bb0c1e7854a30864c3ea91c9dc82be7dbd0f98f3913187a068a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Carbide tools</topic><topic>Chip formation</topic><topic>Chipping</topic><topic>Cutting edge radius</topic><topic>Cutting tools</topic><topic>Feed rate</topic><topic>Finite element method</topic><topic>Heat</topic><topic>Investigations</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Phosphate esters</topic><topic>Process parameters</topic><topic>Simulation</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Surface roughness</topic><topic>Titanium alloys</topic><topic>Tungsten carbide</topic><topic>Turning (machining)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elkaseer, Ahmed</creatorcontrib><creatorcontrib>Abdelaziz, Ali</creatorcontrib><creatorcontrib>Saber, Mohammed</creatorcontrib><creatorcontrib>Nassef, Ahmed</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elkaseer, Ahmed</au><au>Abdelaziz, Ali</au><au>Saber, Mohammed</au><au>Nassef, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FEM-Based Study of Precision Hard Turning of Stainless Steel 316L</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-08-08</date><risdate>2019</risdate><volume>12</volume><issue>16</issue><spage>2522</spage><pages>2522-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning tests was carried out using tungsten carbide tools under similar cutting conditions to validate the results obtained from the FEM for the chipping process and at the same time to experimentally examine the generated surface roughness. These results helped in the analysis and understanding the chip formation process and the surface generation phenomena during the cutting process, especially on micro scale. Good agreement between experiments and FEM results was found, which confirmed that the cutting process was accurately simulated by the FEM and allowed the identification of the optimum process parameters to ensure high performance. Results obtained from the simulation revealed that, an applied feed equals to 0.75 of edge radius of new cutting tool is the optimal cutting conditions for stainless steel 316L. Moreover, the experimental results demonstrated that in contrast to conventional turning processes, a nonlinear relationship was found between the feed rate and obtainable surface roughness, with a minimum surface roughness obtained when the feed rate laid between 0.75 and 1.25 times the original cutting edge radius, for new and worn tools, respectively.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31398807</pmid><doi>10.3390/ma12162522</doi><orcidid>https://orcid.org/0000-0003-4982-4679</orcidid><orcidid>https://orcid.org/0000-0002-2500-3617</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2019-08, Vol.12 (16), p.2522 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720947 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Carbide tools Chip formation Chipping Cutting edge radius Cutting tools Feed rate Finite element method Heat Investigations Optimization Parameter identification Phosphate esters Process parameters Simulation Stainless steel Stainless steels Surface roughness Titanium alloys Tungsten carbide Turning (machining) |
title | FEM-Based Study of Precision Hard Turning of Stainless Steel 316L |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FEM-Based%20Study%20of%20Precision%20Hard%20Turning%20of%20Stainless%20Steel%20316L&rft.jtitle=Materials&rft.au=Elkaseer,%20Ahmed&rft.date=2019-08-08&rft.volume=12&rft.issue=16&rft.spage=2522&rft.pages=2522-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12162522&rft_dat=%3Cproquest_pubme%3E2548684126%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548684126&rft_id=info:pmid/31398807&rfr_iscdi=true |