Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis

In this study, we synthesized a Zr-89-labeled anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) for applications in immuno-positron emission tomography (PET) and evaluated its feasibility for angiogenesis imaging. The cellular uptake of Zr-89 ATPS mAb was measured after treatment o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-08, Vol.20 (16), p.3928
Hauptverfasser: Park, Bok-Nam, Kim, Ga-Hee, Ko, Seung-A, Shin, Ga-Hee, Lee, Su-Jin, An, Young-Sil, Yoon, Joon-Kee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 3928
container_title International journal of molecular sciences
container_volume 20
creator Park, Bok-Nam
Kim, Ga-Hee
Ko, Seung-A
Shin, Ga-Hee
Lee, Su-Jin
An, Young-Sil
Yoon, Joon-Kee
description In this study, we synthesized a Zr-89-labeled anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) for applications in immuno-positron emission tomography (PET) and evaluated its feasibility for angiogenesis imaging. The cellular uptake of Zr-89 ATPS mAb was measured after treatment of cancer cell lines in vitro, and its biodistribution was evaluated at 4, 24 and 48 h in vivo in mice bearing xenografts. PET images were acquired at 4, 24, 48, and 96 h after Zr-89 ATPS mAb administration. Tumor angiogenesis was analyzed using anti-CD31 immunofluorescence staining. The cellular uptake of Zr-89 ATPS mAb increased over time in MDA-MB-231 breast cancer cells but did not increase in PC3 prostate cancer cells. The tumor uptake of Zr-89 ATPS mAb at 24 h was 9.4 ± 0.9% ID/g for MDA-Mb-231 cells and was 3.8 ± 0.6% ID/g for PC3 cells ( 0.004). Zr-89 ATPS mAb uptake in MDA-MB-231 xenografts was inhibited by the administration of cold ATPS mAb (4.4 ± 0.5% ID/g, 0.011). Zr-89 ATPS mAb uptake could be visualized by PET for up to 96 h in MDA-MB-231 tumors. In contrast, there was no distinct tumor uptake detected by PET in the PC3 xenograft model. CD31-positive tumor vessels were abundant in MDA-MB-231 tumors, whereas they were scarcely detected in PC3 tumors. In conclusion, ATPS mAb was successfully labeled with Zr-89, which could be used for immuno-PET imaging targeting tumor angiogenesis.
doi_str_mv 10.3390/ijms20163928
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333667296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-1553bc7ca4006dc261e97705edceb92971294c35c411ba2ca196dc10e9ea7a4b3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoPqo71xJw48LRPCaTZiMUqVoQLDi6ECRkYjqmzCQ1mRH6702xSnV1L9zvHs7hAHCM0QWlAl3aeRsJwgUVZLgF9nFOSIZQwbc39j1wEOMcIUIJE7tgj-IcE0b5Pnh9CdlQwEnb9s5n03EJSxVq01lXw7Hu_MJqOCqn8HHpuncVDRw7VTUmwonLnu2nT5-qXsF-Bsu-9QGOXG19bZyJNh6CnZlqojlazwF4uhmX13fZ_cPt5Hp0n-nko8swY7TSXKs8mX3TpMBGcI6YedOmEkRwTESuKUs0rhTRCouEYWSEUVzlFR2Aq2_dRV-1qy_XBdXIRbCtCkvplZV_L86-y9p_yoITlA9ZEjhbCwT_0ZvYydZGbZpGOeP7KAnhlBcMCZTQ03_o3PfBpXiSUEqLJCmKRJ1_Uzr4GIOZ_ZrBSK56k5u9JfxkM8Av_FMU_QLc05Lf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333667296</pqid></control><display><type>article</type><title>Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Park, Bok-Nam ; Kim, Ga-Hee ; Ko, Seung-A ; Shin, Ga-Hee ; Lee, Su-Jin ; An, Young-Sil ; Yoon, Joon-Kee</creator><creatorcontrib>Park, Bok-Nam ; Kim, Ga-Hee ; Ko, Seung-A ; Shin, Ga-Hee ; Lee, Su-Jin ; An, Young-Sil ; Yoon, Joon-Kee</creatorcontrib><description>In this study, we synthesized a Zr-89-labeled anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) for applications in immuno-positron emission tomography (PET) and evaluated its feasibility for angiogenesis imaging. The cellular uptake of Zr-89 ATPS mAb was measured after treatment of cancer cell lines in vitro, and its biodistribution was evaluated at 4, 24 and 48 h in vivo in mice bearing xenografts. PET images were acquired at 4, 24, 48, and 96 h after Zr-89 ATPS mAb administration. Tumor angiogenesis was analyzed using anti-CD31 immunofluorescence staining. The cellular uptake of Zr-89 ATPS mAb increased over time in MDA-MB-231 breast cancer cells but did not increase in PC3 prostate cancer cells. The tumor uptake of Zr-89 ATPS mAb at 24 h was 9.4 ± 0.9% ID/g for MDA-Mb-231 cells and was 3.8 ± 0.6% ID/g for PC3 cells ( 0.004). Zr-89 ATPS mAb uptake in MDA-MB-231 xenografts was inhibited by the administration of cold ATPS mAb (4.4 ± 0.5% ID/g, 0.011). Zr-89 ATPS mAb uptake could be visualized by PET for up to 96 h in MDA-MB-231 tumors. In contrast, there was no distinct tumor uptake detected by PET in the PC3 xenograft model. CD31-positive tumor vessels were abundant in MDA-MB-231 tumors, whereas they were scarcely detected in PC3 tumors. In conclusion, ATPS mAb was successfully labeled with Zr-89, which could be used for immuno-PET imaging targeting tumor angiogenesis.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20163928</identifier><identifier>PMID: 31412537</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenosine Triphosphate - metabolism ; Angiogenesis ; Angiostatin ; Animals ; Antiangiogenics ; Antibodies, Monoclonal ; ATP synthase ; Binding sites ; Bone marrow ; CD20 antigen ; Cell Line, Tumor ; Cell surface ; Confocal microscopy ; Disease Models, Animal ; Endothelial cells ; Epidermal growth factor ; ErbB-2 protein ; Female ; Fibroblast growth factors ; Gastric cancer ; Growth factors ; Heterografts ; Humans ; Immunoconjugates ; Immunoglobulins ; Male ; Membranes ; Mice ; Microscopy ; Molecular Imaging - methods ; Monoclonal antibodies ; Neoplasms - diagnostic imaging ; Neoplasms - pathology ; Neovascularization, Pathologic - diagnostic imaging ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Prostate ; Proteins ; Radioisotopes ; Radioisotopes - chemistry ; Radioisotopes - metabolism ; Radiopharmaceuticals - chemistry ; Radiopharmaceuticals - metabolism ; Tissue Distribution ; Tomography ; Tumor cell lines ; Tumors ; Vascular endothelial growth factor ; Western blotting ; Zirconium ; Zirconium - chemistry ; Zirconium - metabolism</subject><ispartof>International journal of molecular sciences, 2019-08, Vol.20 (16), p.3928</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-1553bc7ca4006dc261e97705edceb92971294c35c411ba2ca196dc10e9ea7a4b3</citedby><cites>FETCH-LOGICAL-c412t-1553bc7ca4006dc261e97705edceb92971294c35c411ba2ca196dc10e9ea7a4b3</cites><orcidid>0000-0001-9934-0125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720485/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720485/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31412537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Bok-Nam</creatorcontrib><creatorcontrib>Kim, Ga-Hee</creatorcontrib><creatorcontrib>Ko, Seung-A</creatorcontrib><creatorcontrib>Shin, Ga-Hee</creatorcontrib><creatorcontrib>Lee, Su-Jin</creatorcontrib><creatorcontrib>An, Young-Sil</creatorcontrib><creatorcontrib>Yoon, Joon-Kee</creatorcontrib><title>Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>In this study, we synthesized a Zr-89-labeled anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) for applications in immuno-positron emission tomography (PET) and evaluated its feasibility for angiogenesis imaging. The cellular uptake of Zr-89 ATPS mAb was measured after treatment of cancer cell lines in vitro, and its biodistribution was evaluated at 4, 24 and 48 h in vivo in mice bearing xenografts. PET images were acquired at 4, 24, 48, and 96 h after Zr-89 ATPS mAb administration. Tumor angiogenesis was analyzed using anti-CD31 immunofluorescence staining. The cellular uptake of Zr-89 ATPS mAb increased over time in MDA-MB-231 breast cancer cells but did not increase in PC3 prostate cancer cells. The tumor uptake of Zr-89 ATPS mAb at 24 h was 9.4 ± 0.9% ID/g for MDA-Mb-231 cells and was 3.8 ± 0.6% ID/g for PC3 cells ( 0.004). Zr-89 ATPS mAb uptake in MDA-MB-231 xenografts was inhibited by the administration of cold ATPS mAb (4.4 ± 0.5% ID/g, 0.011). Zr-89 ATPS mAb uptake could be visualized by PET for up to 96 h in MDA-MB-231 tumors. In contrast, there was no distinct tumor uptake detected by PET in the PC3 xenograft model. CD31-positive tumor vessels were abundant in MDA-MB-231 tumors, whereas they were scarcely detected in PC3 tumors. In conclusion, ATPS mAb was successfully labeled with Zr-89, which could be used for immuno-PET imaging targeting tumor angiogenesis.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Angiogenesis</subject><subject>Angiostatin</subject><subject>Animals</subject><subject>Antiangiogenics</subject><subject>Antibodies, Monoclonal</subject><subject>ATP synthase</subject><subject>Binding sites</subject><subject>Bone marrow</subject><subject>CD20 antigen</subject><subject>Cell Line, Tumor</subject><subject>Cell surface</subject><subject>Confocal microscopy</subject><subject>Disease Models, Animal</subject><subject>Endothelial cells</subject><subject>Epidermal growth factor</subject><subject>ErbB-2 protein</subject><subject>Female</subject><subject>Fibroblast growth factors</subject><subject>Gastric cancer</subject><subject>Growth factors</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Immunoconjugates</subject><subject>Immunoglobulins</subject><subject>Male</subject><subject>Membranes</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Molecular Imaging - methods</subject><subject>Monoclonal antibodies</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - pathology</subject><subject>Neovascularization, Pathologic - diagnostic imaging</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Prostate</subject><subject>Proteins</subject><subject>Radioisotopes</subject><subject>Radioisotopes - chemistry</subject><subject>Radioisotopes - metabolism</subject><subject>Radiopharmaceuticals - chemistry</subject><subject>Radiopharmaceuticals - metabolism</subject><subject>Tissue Distribution</subject><subject>Tomography</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Western blotting</subject><subject>Zirconium</subject><subject>Zirconium - chemistry</subject><subject>Zirconium - metabolism</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUtLAzEUhYMoPqo71xJw48LRPCaTZiMUqVoQLDi6ECRkYjqmzCQ1mRH6702xSnV1L9zvHs7hAHCM0QWlAl3aeRsJwgUVZLgF9nFOSIZQwbc39j1wEOMcIUIJE7tgj-IcE0b5Pnh9CdlQwEnb9s5n03EJSxVq01lXw7Hu_MJqOCqn8HHpuncVDRw7VTUmwonLnu2nT5-qXsF-Bsu-9QGOXG19bZyJNh6CnZlqojlazwF4uhmX13fZ_cPt5Hp0n-nko8swY7TSXKs8mX3TpMBGcI6YedOmEkRwTESuKUs0rhTRCouEYWSEUVzlFR2Aq2_dRV-1qy_XBdXIRbCtCkvplZV_L86-y9p_yoITlA9ZEjhbCwT_0ZvYydZGbZpGOeP7KAnhlBcMCZTQ03_o3PfBpXiSUEqLJCmKRJ1_Uzr4GIOZ_ZrBSK56k5u9JfxkM8Av_FMU_QLc05Lf</recordid><startdate>20190813</startdate><enddate>20190813</enddate><creator>Park, Bok-Nam</creator><creator>Kim, Ga-Hee</creator><creator>Ko, Seung-A</creator><creator>Shin, Ga-Hee</creator><creator>Lee, Su-Jin</creator><creator>An, Young-Sil</creator><creator>Yoon, Joon-Kee</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9934-0125</orcidid></search><sort><creationdate>20190813</creationdate><title>Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis</title><author>Park, Bok-Nam ; Kim, Ga-Hee ; Ko, Seung-A ; Shin, Ga-Hee ; Lee, Su-Jin ; An, Young-Sil ; Yoon, Joon-Kee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-1553bc7ca4006dc261e97705edceb92971294c35c411ba2ca196dc10e9ea7a4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Angiogenesis</topic><topic>Angiostatin</topic><topic>Animals</topic><topic>Antiangiogenics</topic><topic>Antibodies, Monoclonal</topic><topic>ATP synthase</topic><topic>Binding sites</topic><topic>Bone marrow</topic><topic>CD20 antigen</topic><topic>Cell Line, Tumor</topic><topic>Cell surface</topic><topic>Confocal microscopy</topic><topic>Disease Models, Animal</topic><topic>Endothelial cells</topic><topic>Epidermal growth factor</topic><topic>ErbB-2 protein</topic><topic>Female</topic><topic>Fibroblast growth factors</topic><topic>Gastric cancer</topic><topic>Growth factors</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Immunoconjugates</topic><topic>Immunoglobulins</topic><topic>Male</topic><topic>Membranes</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Molecular Imaging - methods</topic><topic>Monoclonal antibodies</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - pathology</topic><topic>Neovascularization, Pathologic - diagnostic imaging</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Prostate</topic><topic>Proteins</topic><topic>Radioisotopes</topic><topic>Radioisotopes - chemistry</topic><topic>Radioisotopes - metabolism</topic><topic>Radiopharmaceuticals - chemistry</topic><topic>Radiopharmaceuticals - metabolism</topic><topic>Tissue Distribution</topic><topic>Tomography</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Western blotting</topic><topic>Zirconium</topic><topic>Zirconium - chemistry</topic><topic>Zirconium - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Bok-Nam</creatorcontrib><creatorcontrib>Kim, Ga-Hee</creatorcontrib><creatorcontrib>Ko, Seung-A</creatorcontrib><creatorcontrib>Shin, Ga-Hee</creatorcontrib><creatorcontrib>Lee, Su-Jin</creatorcontrib><creatorcontrib>An, Young-Sil</creatorcontrib><creatorcontrib>Yoon, Joon-Kee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Bok-Nam</au><au>Kim, Ga-Hee</au><au>Ko, Seung-A</au><au>Shin, Ga-Hee</au><au>Lee, Su-Jin</au><au>An, Young-Sil</au><au>Yoon, Joon-Kee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-08-13</date><risdate>2019</risdate><volume>20</volume><issue>16</issue><spage>3928</spage><pages>3928-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>In this study, we synthesized a Zr-89-labeled anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) for applications in immuno-positron emission tomography (PET) and evaluated its feasibility for angiogenesis imaging. The cellular uptake of Zr-89 ATPS mAb was measured after treatment of cancer cell lines in vitro, and its biodistribution was evaluated at 4, 24 and 48 h in vivo in mice bearing xenografts. PET images were acquired at 4, 24, 48, and 96 h after Zr-89 ATPS mAb administration. Tumor angiogenesis was analyzed using anti-CD31 immunofluorescence staining. The cellular uptake of Zr-89 ATPS mAb increased over time in MDA-MB-231 breast cancer cells but did not increase in PC3 prostate cancer cells. The tumor uptake of Zr-89 ATPS mAb at 24 h was 9.4 ± 0.9% ID/g for MDA-Mb-231 cells and was 3.8 ± 0.6% ID/g for PC3 cells ( 0.004). Zr-89 ATPS mAb uptake in MDA-MB-231 xenografts was inhibited by the administration of cold ATPS mAb (4.4 ± 0.5% ID/g, 0.011). Zr-89 ATPS mAb uptake could be visualized by PET for up to 96 h in MDA-MB-231 tumors. In contrast, there was no distinct tumor uptake detected by PET in the PC3 xenograft model. CD31-positive tumor vessels were abundant in MDA-MB-231 tumors, whereas they were scarcely detected in PC3 tumors. In conclusion, ATPS mAb was successfully labeled with Zr-89, which could be used for immuno-PET imaging targeting tumor angiogenesis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31412537</pmid><doi>10.3390/ijms20163928</doi><orcidid>https://orcid.org/0000-0001-9934-0125</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2019-08, Vol.20 (16), p.3928
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720485
source MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adenosine Triphosphate - metabolism
Angiogenesis
Angiostatin
Animals
Antiangiogenics
Antibodies, Monoclonal
ATP synthase
Binding sites
Bone marrow
CD20 antigen
Cell Line, Tumor
Cell surface
Confocal microscopy
Disease Models, Animal
Endothelial cells
Epidermal growth factor
ErbB-2 protein
Female
Fibroblast growth factors
Gastric cancer
Growth factors
Heterografts
Humans
Immunoconjugates
Immunoglobulins
Male
Membranes
Mice
Microscopy
Molecular Imaging - methods
Monoclonal antibodies
Neoplasms - diagnostic imaging
Neoplasms - pathology
Neovascularization, Pathologic - diagnostic imaging
Positron emission
Positron emission tomography
Positron-Emission Tomography - methods
Prostate
Proteins
Radioisotopes
Radioisotopes - chemistry
Radioisotopes - metabolism
Radiopharmaceuticals - chemistry
Radiopharmaceuticals - metabolism
Tissue Distribution
Tomography
Tumor cell lines
Tumors
Vascular endothelial growth factor
Western blotting
Zirconium
Zirconium - chemistry
Zirconium - metabolism
title Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zr-89%20Immuno-PET%20Targeting%20Ectopic%20ATP%20Synthase%20Enables%20In-Vivo%20Imaging%20of%20Tumor%20Angiogenesis&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Park,%20Bok-Nam&rft.date=2019-08-13&rft.volume=20&rft.issue=16&rft.spage=3928&rft.pages=3928-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20163928&rft_dat=%3Cproquest_pubme%3E2333667296%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333667296&rft_id=info:pmid/31412537&rfr_iscdi=true