Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis
In this study, we synthesized a Zr-89-labeled anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) for applications in immuno-positron emission tomography (PET) and evaluated its feasibility for angiogenesis imaging. The cellular uptake of Zr-89 ATPS mAb was measured after treatment o...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2019-08, Vol.20 (16), p.3928 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 3928 |
container_title | International journal of molecular sciences |
container_volume | 20 |
creator | Park, Bok-Nam Kim, Ga-Hee Ko, Seung-A Shin, Ga-Hee Lee, Su-Jin An, Young-Sil Yoon, Joon-Kee |
description | In this study, we synthesized a Zr-89-labeled anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) for applications in immuno-positron emission tomography (PET) and evaluated its feasibility for angiogenesis imaging. The cellular uptake of Zr-89 ATPS mAb was measured after treatment of cancer cell lines in vitro, and its biodistribution was evaluated at 4, 24 and 48 h in vivo in mice bearing xenografts. PET images were acquired at 4, 24, 48, and 96 h after Zr-89 ATPS mAb administration. Tumor angiogenesis was analyzed using anti-CD31 immunofluorescence staining. The cellular uptake of Zr-89 ATPS mAb increased over time in MDA-MB-231 breast cancer cells but did not increase in PC3 prostate cancer cells. The tumor uptake of Zr-89 ATPS mAb at 24 h was 9.4 ± 0.9% ID/g for MDA-Mb-231 cells and was 3.8 ± 0.6% ID/g for PC3 cells (
0.004). Zr-89 ATPS mAb uptake in MDA-MB-231 xenografts was inhibited by the administration of cold ATPS mAb (4.4 ± 0.5% ID/g,
0.011). Zr-89 ATPS mAb uptake could be visualized by PET for up to 96 h in MDA-MB-231 tumors. In contrast, there was no distinct tumor uptake detected by PET in the PC3 xenograft model. CD31-positive tumor vessels were abundant in MDA-MB-231 tumors, whereas they were scarcely detected in PC3 tumors. In conclusion, ATPS mAb was successfully labeled with Zr-89, which could be used for immuno-PET imaging targeting tumor angiogenesis. |
doi_str_mv | 10.3390/ijms20163928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333667296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-1553bc7ca4006dc261e97705edceb92971294c35c411ba2ca196dc10e9ea7a4b3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoPqo71xJw48LRPCaTZiMUqVoQLDi6ECRkYjqmzCQ1mRH6702xSnV1L9zvHs7hAHCM0QWlAl3aeRsJwgUVZLgF9nFOSIZQwbc39j1wEOMcIUIJE7tgj-IcE0b5Pnh9CdlQwEnb9s5n03EJSxVq01lXw7Hu_MJqOCqn8HHpuncVDRw7VTUmwonLnu2nT5-qXsF-Bsu-9QGOXG19bZyJNh6CnZlqojlazwF4uhmX13fZ_cPt5Hp0n-nko8swY7TSXKs8mX3TpMBGcI6YedOmEkRwTESuKUs0rhTRCouEYWSEUVzlFR2Aq2_dRV-1qy_XBdXIRbCtCkvplZV_L86-y9p_yoITlA9ZEjhbCwT_0ZvYydZGbZpGOeP7KAnhlBcMCZTQ03_o3PfBpXiSUEqLJCmKRJ1_Uzr4GIOZ_ZrBSK56k5u9JfxkM8Av_FMU_QLc05Lf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333667296</pqid></control><display><type>article</type><title>Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Park, Bok-Nam ; Kim, Ga-Hee ; Ko, Seung-A ; Shin, Ga-Hee ; Lee, Su-Jin ; An, Young-Sil ; Yoon, Joon-Kee</creator><creatorcontrib>Park, Bok-Nam ; Kim, Ga-Hee ; Ko, Seung-A ; Shin, Ga-Hee ; Lee, Su-Jin ; An, Young-Sil ; Yoon, Joon-Kee</creatorcontrib><description>In this study, we synthesized a Zr-89-labeled anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) for applications in immuno-positron emission tomography (PET) and evaluated its feasibility for angiogenesis imaging. The cellular uptake of Zr-89 ATPS mAb was measured after treatment of cancer cell lines in vitro, and its biodistribution was evaluated at 4, 24 and 48 h in vivo in mice bearing xenografts. PET images were acquired at 4, 24, 48, and 96 h after Zr-89 ATPS mAb administration. Tumor angiogenesis was analyzed using anti-CD31 immunofluorescence staining. The cellular uptake of Zr-89 ATPS mAb increased over time in MDA-MB-231 breast cancer cells but did not increase in PC3 prostate cancer cells. The tumor uptake of Zr-89 ATPS mAb at 24 h was 9.4 ± 0.9% ID/g for MDA-Mb-231 cells and was 3.8 ± 0.6% ID/g for PC3 cells (
0.004). Zr-89 ATPS mAb uptake in MDA-MB-231 xenografts was inhibited by the administration of cold ATPS mAb (4.4 ± 0.5% ID/g,
0.011). Zr-89 ATPS mAb uptake could be visualized by PET for up to 96 h in MDA-MB-231 tumors. In contrast, there was no distinct tumor uptake detected by PET in the PC3 xenograft model. CD31-positive tumor vessels were abundant in MDA-MB-231 tumors, whereas they were scarcely detected in PC3 tumors. In conclusion, ATPS mAb was successfully labeled with Zr-89, which could be used for immuno-PET imaging targeting tumor angiogenesis.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20163928</identifier><identifier>PMID: 31412537</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenosine Triphosphate - metabolism ; Angiogenesis ; Angiostatin ; Animals ; Antiangiogenics ; Antibodies, Monoclonal ; ATP synthase ; Binding sites ; Bone marrow ; CD20 antigen ; Cell Line, Tumor ; Cell surface ; Confocal microscopy ; Disease Models, Animal ; Endothelial cells ; Epidermal growth factor ; ErbB-2 protein ; Female ; Fibroblast growth factors ; Gastric cancer ; Growth factors ; Heterografts ; Humans ; Immunoconjugates ; Immunoglobulins ; Male ; Membranes ; Mice ; Microscopy ; Molecular Imaging - methods ; Monoclonal antibodies ; Neoplasms - diagnostic imaging ; Neoplasms - pathology ; Neovascularization, Pathologic - diagnostic imaging ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Prostate ; Proteins ; Radioisotopes ; Radioisotopes - chemistry ; Radioisotopes - metabolism ; Radiopharmaceuticals - chemistry ; Radiopharmaceuticals - metabolism ; Tissue Distribution ; Tomography ; Tumor cell lines ; Tumors ; Vascular endothelial growth factor ; Western blotting ; Zirconium ; Zirconium - chemistry ; Zirconium - metabolism</subject><ispartof>International journal of molecular sciences, 2019-08, Vol.20 (16), p.3928</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-1553bc7ca4006dc261e97705edceb92971294c35c411ba2ca196dc10e9ea7a4b3</citedby><cites>FETCH-LOGICAL-c412t-1553bc7ca4006dc261e97705edceb92971294c35c411ba2ca196dc10e9ea7a4b3</cites><orcidid>0000-0001-9934-0125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720485/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720485/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31412537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Bok-Nam</creatorcontrib><creatorcontrib>Kim, Ga-Hee</creatorcontrib><creatorcontrib>Ko, Seung-A</creatorcontrib><creatorcontrib>Shin, Ga-Hee</creatorcontrib><creatorcontrib>Lee, Su-Jin</creatorcontrib><creatorcontrib>An, Young-Sil</creatorcontrib><creatorcontrib>Yoon, Joon-Kee</creatorcontrib><title>Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>In this study, we synthesized a Zr-89-labeled anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) for applications in immuno-positron emission tomography (PET) and evaluated its feasibility for angiogenesis imaging. The cellular uptake of Zr-89 ATPS mAb was measured after treatment of cancer cell lines in vitro, and its biodistribution was evaluated at 4, 24 and 48 h in vivo in mice bearing xenografts. PET images were acquired at 4, 24, 48, and 96 h after Zr-89 ATPS mAb administration. Tumor angiogenesis was analyzed using anti-CD31 immunofluorescence staining. The cellular uptake of Zr-89 ATPS mAb increased over time in MDA-MB-231 breast cancer cells but did not increase in PC3 prostate cancer cells. The tumor uptake of Zr-89 ATPS mAb at 24 h was 9.4 ± 0.9% ID/g for MDA-Mb-231 cells and was 3.8 ± 0.6% ID/g for PC3 cells (
0.004). Zr-89 ATPS mAb uptake in MDA-MB-231 xenografts was inhibited by the administration of cold ATPS mAb (4.4 ± 0.5% ID/g,
0.011). Zr-89 ATPS mAb uptake could be visualized by PET for up to 96 h in MDA-MB-231 tumors. In contrast, there was no distinct tumor uptake detected by PET in the PC3 xenograft model. CD31-positive tumor vessels were abundant in MDA-MB-231 tumors, whereas they were scarcely detected in PC3 tumors. In conclusion, ATPS mAb was successfully labeled with Zr-89, which could be used for immuno-PET imaging targeting tumor angiogenesis.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Angiogenesis</subject><subject>Angiostatin</subject><subject>Animals</subject><subject>Antiangiogenics</subject><subject>Antibodies, Monoclonal</subject><subject>ATP synthase</subject><subject>Binding sites</subject><subject>Bone marrow</subject><subject>CD20 antigen</subject><subject>Cell Line, Tumor</subject><subject>Cell surface</subject><subject>Confocal microscopy</subject><subject>Disease Models, Animal</subject><subject>Endothelial cells</subject><subject>Epidermal growth factor</subject><subject>ErbB-2 protein</subject><subject>Female</subject><subject>Fibroblast growth factors</subject><subject>Gastric cancer</subject><subject>Growth factors</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Immunoconjugates</subject><subject>Immunoglobulins</subject><subject>Male</subject><subject>Membranes</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Molecular Imaging - methods</subject><subject>Monoclonal antibodies</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - pathology</subject><subject>Neovascularization, Pathologic - diagnostic imaging</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Prostate</subject><subject>Proteins</subject><subject>Radioisotopes</subject><subject>Radioisotopes - chemistry</subject><subject>Radioisotopes - metabolism</subject><subject>Radiopharmaceuticals - chemistry</subject><subject>Radiopharmaceuticals - metabolism</subject><subject>Tissue Distribution</subject><subject>Tomography</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Western blotting</subject><subject>Zirconium</subject><subject>Zirconium - chemistry</subject><subject>Zirconium - metabolism</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUtLAzEUhYMoPqo71xJw48LRPCaTZiMUqVoQLDi6ECRkYjqmzCQ1mRH6702xSnV1L9zvHs7hAHCM0QWlAl3aeRsJwgUVZLgF9nFOSIZQwbc39j1wEOMcIUIJE7tgj-IcE0b5Pnh9CdlQwEnb9s5n03EJSxVq01lXw7Hu_MJqOCqn8HHpuncVDRw7VTUmwonLnu2nT5-qXsF-Bsu-9QGOXG19bZyJNh6CnZlqojlazwF4uhmX13fZ_cPt5Hp0n-nko8swY7TSXKs8mX3TpMBGcI6YedOmEkRwTESuKUs0rhTRCouEYWSEUVzlFR2Aq2_dRV-1qy_XBdXIRbCtCkvplZV_L86-y9p_yoITlA9ZEjhbCwT_0ZvYydZGbZpGOeP7KAnhlBcMCZTQ03_o3PfBpXiSUEqLJCmKRJ1_Uzr4GIOZ_ZrBSK56k5u9JfxkM8Av_FMU_QLc05Lf</recordid><startdate>20190813</startdate><enddate>20190813</enddate><creator>Park, Bok-Nam</creator><creator>Kim, Ga-Hee</creator><creator>Ko, Seung-A</creator><creator>Shin, Ga-Hee</creator><creator>Lee, Su-Jin</creator><creator>An, Young-Sil</creator><creator>Yoon, Joon-Kee</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9934-0125</orcidid></search><sort><creationdate>20190813</creationdate><title>Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis</title><author>Park, Bok-Nam ; Kim, Ga-Hee ; Ko, Seung-A ; Shin, Ga-Hee ; Lee, Su-Jin ; An, Young-Sil ; Yoon, Joon-Kee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-1553bc7ca4006dc261e97705edceb92971294c35c411ba2ca196dc10e9ea7a4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Angiogenesis</topic><topic>Angiostatin</topic><topic>Animals</topic><topic>Antiangiogenics</topic><topic>Antibodies, Monoclonal</topic><topic>ATP synthase</topic><topic>Binding sites</topic><topic>Bone marrow</topic><topic>CD20 antigen</topic><topic>Cell Line, Tumor</topic><topic>Cell surface</topic><topic>Confocal microscopy</topic><topic>Disease Models, Animal</topic><topic>Endothelial cells</topic><topic>Epidermal growth factor</topic><topic>ErbB-2 protein</topic><topic>Female</topic><topic>Fibroblast growth factors</topic><topic>Gastric cancer</topic><topic>Growth factors</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Immunoconjugates</topic><topic>Immunoglobulins</topic><topic>Male</topic><topic>Membranes</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Molecular Imaging - methods</topic><topic>Monoclonal antibodies</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - pathology</topic><topic>Neovascularization, Pathologic - diagnostic imaging</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Prostate</topic><topic>Proteins</topic><topic>Radioisotopes</topic><topic>Radioisotopes - chemistry</topic><topic>Radioisotopes - metabolism</topic><topic>Radiopharmaceuticals - chemistry</topic><topic>Radiopharmaceuticals - metabolism</topic><topic>Tissue Distribution</topic><topic>Tomography</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Western blotting</topic><topic>Zirconium</topic><topic>Zirconium - chemistry</topic><topic>Zirconium - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Bok-Nam</creatorcontrib><creatorcontrib>Kim, Ga-Hee</creatorcontrib><creatorcontrib>Ko, Seung-A</creatorcontrib><creatorcontrib>Shin, Ga-Hee</creatorcontrib><creatorcontrib>Lee, Su-Jin</creatorcontrib><creatorcontrib>An, Young-Sil</creatorcontrib><creatorcontrib>Yoon, Joon-Kee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Bok-Nam</au><au>Kim, Ga-Hee</au><au>Ko, Seung-A</au><au>Shin, Ga-Hee</au><au>Lee, Su-Jin</au><au>An, Young-Sil</au><au>Yoon, Joon-Kee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-08-13</date><risdate>2019</risdate><volume>20</volume><issue>16</issue><spage>3928</spage><pages>3928-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>In this study, we synthesized a Zr-89-labeled anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) for applications in immuno-positron emission tomography (PET) and evaluated its feasibility for angiogenesis imaging. The cellular uptake of Zr-89 ATPS mAb was measured after treatment of cancer cell lines in vitro, and its biodistribution was evaluated at 4, 24 and 48 h in vivo in mice bearing xenografts. PET images were acquired at 4, 24, 48, and 96 h after Zr-89 ATPS mAb administration. Tumor angiogenesis was analyzed using anti-CD31 immunofluorescence staining. The cellular uptake of Zr-89 ATPS mAb increased over time in MDA-MB-231 breast cancer cells but did not increase in PC3 prostate cancer cells. The tumor uptake of Zr-89 ATPS mAb at 24 h was 9.4 ± 0.9% ID/g for MDA-Mb-231 cells and was 3.8 ± 0.6% ID/g for PC3 cells (
0.004). Zr-89 ATPS mAb uptake in MDA-MB-231 xenografts was inhibited by the administration of cold ATPS mAb (4.4 ± 0.5% ID/g,
0.011). Zr-89 ATPS mAb uptake could be visualized by PET for up to 96 h in MDA-MB-231 tumors. In contrast, there was no distinct tumor uptake detected by PET in the PC3 xenograft model. CD31-positive tumor vessels were abundant in MDA-MB-231 tumors, whereas they were scarcely detected in PC3 tumors. In conclusion, ATPS mAb was successfully labeled with Zr-89, which could be used for immuno-PET imaging targeting tumor angiogenesis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31412537</pmid><doi>10.3390/ijms20163928</doi><orcidid>https://orcid.org/0000-0001-9934-0125</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2019-08, Vol.20 (16), p.3928 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720485 |
source | MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adenosine Triphosphate - metabolism Angiogenesis Angiostatin Animals Antiangiogenics Antibodies, Monoclonal ATP synthase Binding sites Bone marrow CD20 antigen Cell Line, Tumor Cell surface Confocal microscopy Disease Models, Animal Endothelial cells Epidermal growth factor ErbB-2 protein Female Fibroblast growth factors Gastric cancer Growth factors Heterografts Humans Immunoconjugates Immunoglobulins Male Membranes Mice Microscopy Molecular Imaging - methods Monoclonal antibodies Neoplasms - diagnostic imaging Neoplasms - pathology Neovascularization, Pathologic - diagnostic imaging Positron emission Positron emission tomography Positron-Emission Tomography - methods Prostate Proteins Radioisotopes Radioisotopes - chemistry Radioisotopes - metabolism Radiopharmaceuticals - chemistry Radiopharmaceuticals - metabolism Tissue Distribution Tomography Tumor cell lines Tumors Vascular endothelial growth factor Western blotting Zirconium Zirconium - chemistry Zirconium - metabolism |
title | Zr-89 Immuno-PET Targeting Ectopic ATP Synthase Enables In-Vivo Imaging of Tumor Angiogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zr-89%20Immuno-PET%20Targeting%20Ectopic%20ATP%20Synthase%20Enables%20In-Vivo%20Imaging%20of%20Tumor%20Angiogenesis&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Park,%20Bok-Nam&rft.date=2019-08-13&rft.volume=20&rft.issue=16&rft.spage=3928&rft.pages=3928-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20163928&rft_dat=%3Cproquest_pubme%3E2333667296%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333667296&rft_id=info:pmid/31412537&rfr_iscdi=true |