Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology

Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-08, Vol.20 (16), p.4068
Hauptverfasser: Anderson, George, Mazzoccoli, Gianluigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 4068
container_title International journal of molecular sciences
container_volume 20
creator Anderson, George
Mazzoccoli, Gianluigi
description Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the 'backward' conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3',5'-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.
doi_str_mv 10.3390/ijms20164068
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333665644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a114d2e807fa8d082e48ac856b10af3db14501175dfb61f506f3ec54386151f23</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhS1ERR-wY40ssWHRKb5-xWFRCSJKkVK1QjzEynL8SBxN7GDPgEb8-U5oqQKre6Xz6eieexB6DuSMsSl5HdebSglITqR6hI6AU9oQIieP9_ZDdFzrmhDKqJg-QYcMOOOMsSP0e-5Dh7_61JVo-9YUfDlsfelK3q6GN_hTbn3FOeCr2GW7ysmVaPDs-w28A2ySw1e-NV1OviyjxTemW_0yQ8Ux4VlurouLyXQxLfG36Hz5o-98a8xtXg5P0UEwbfXP7ucJ-nLx_vPssplff_g4eztvLCeqawwAd9QrMglGOaKo58pYJeQCiAnMLYALAjARLiwkBEFkYN4KzpQEAYGyE3R-57vtFxvv7C6safW2xI0pg84m6n-VFFd6mX9qORkfq8Ro8OreoOQfva-d3sRqfdua5HNfNWUAUkwZlyP68j90nfuSxngjxZiUQnI-Uqd3lC251uLDwzFA9K5Vvd_qiL_YD_AA_62R3QJ9ep8B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333665644</pqid></control><display><type>article</type><title>Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Anderson, George ; Mazzoccoli, Gianluigi</creator><creatorcontrib>Anderson, George ; Mazzoccoli, Gianluigi</creatorcontrib><description>Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the 'backward' conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3',5'-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20164068</identifier><identifier>PMID: 31434333</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Activation ; Animals ; Blood pressure ; Brain-derived neurotrophic factor ; Cardiomyocytes ; Cyclic AMP response element-binding protein ; Cytochrome P-450 CYP1B1 - genetics ; Cytochrome P-450 CYP1B1 - metabolism ; Cytokines ; Deoxyribonucleic acid ; Diabetes ; Digestive system ; DNA ; Fibrosis ; Gastrointestinal Microbiome - physiology ; Gene expression ; Humans ; Hydrocarbons ; Hypertension ; Hypertrophy ; Hypertrophy, Left Ventricular - metabolism ; Hypertrophy, Left Ventricular - physiopathology ; Inflammation ; Kinases ; Ligands ; MAP kinase ; Melatonin ; Melatonin - metabolism ; Metabolites ; Microbiota ; Mitochondria ; Mitochondria - metabolism ; Mitogen-Activated Protein Kinases - metabolism ; Oxidative stress ; Physiology ; Protein kinase ; Proteins ; Renal function ; Review ; Roles ; Sirtuins - metabolism ; Transcription ; Ventricle</subject><ispartof>International journal of molecular sciences, 2019-08, Vol.20 (16), p.4068</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a114d2e807fa8d082e48ac856b10af3db14501175dfb61f506f3ec54386151f23</citedby><cites>FETCH-LOGICAL-c408t-a114d2e807fa8d082e48ac856b10af3db14501175dfb61f506f3ec54386151f23</cites><orcidid>0000-0003-3535-7635 ; 0000-0001-7243-0817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720185/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720185/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31434333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, George</creatorcontrib><creatorcontrib>Mazzoccoli, Gianluigi</creatorcontrib><title>Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the 'backward' conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3',5'-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.</description><subject>Activation</subject><subject>Animals</subject><subject>Blood pressure</subject><subject>Brain-derived neurotrophic factor</subject><subject>Cardiomyocytes</subject><subject>Cyclic AMP response element-binding protein</subject><subject>Cytochrome P-450 CYP1B1 - genetics</subject><subject>Cytochrome P-450 CYP1B1 - metabolism</subject><subject>Cytokines</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>Digestive system</subject><subject>DNA</subject><subject>Fibrosis</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hydrocarbons</subject><subject>Hypertension</subject><subject>Hypertrophy</subject><subject>Hypertrophy, Left Ventricular - metabolism</subject><subject>Hypertrophy, Left Ventricular - physiopathology</subject><subject>Inflammation</subject><subject>Kinases</subject><subject>Ligands</subject><subject>MAP kinase</subject><subject>Melatonin</subject><subject>Melatonin - metabolism</subject><subject>Metabolites</subject><subject>Microbiota</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Oxidative stress</subject><subject>Physiology</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Renal function</subject><subject>Review</subject><subject>Roles</subject><subject>Sirtuins - metabolism</subject><subject>Transcription</subject><subject>Ventricle</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUtvEzEUhS1ERR-wY40ssWHRKb5-xWFRCSJKkVK1QjzEynL8SBxN7GDPgEb8-U5oqQKre6Xz6eieexB6DuSMsSl5HdebSglITqR6hI6AU9oQIieP9_ZDdFzrmhDKqJg-QYcMOOOMsSP0e-5Dh7_61JVo-9YUfDlsfelK3q6GN_hTbn3FOeCr2GW7ysmVaPDs-w28A2ySw1e-NV1OviyjxTemW_0yQ8Ux4VlurouLyXQxLfG36Hz5o-98a8xtXg5P0UEwbfXP7ucJ-nLx_vPssplff_g4eztvLCeqawwAd9QrMglGOaKo58pYJeQCiAnMLYALAjARLiwkBEFkYN4KzpQEAYGyE3R-57vtFxvv7C6safW2xI0pg84m6n-VFFd6mX9qORkfq8Ro8OreoOQfva-d3sRqfdua5HNfNWUAUkwZlyP68j90nfuSxngjxZiUQnI-Uqd3lC251uLDwzFA9K5Vvd_qiL_YD_AA_62R3QJ9ep8B</recordid><startdate>20190820</startdate><enddate>20190820</enddate><creator>Anderson, George</creator><creator>Mazzoccoli, Gianluigi</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3535-7635</orcidid><orcidid>https://orcid.org/0000-0001-7243-0817</orcidid></search><sort><creationdate>20190820</creationdate><title>Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology</title><author>Anderson, George ; Mazzoccoli, Gianluigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a114d2e807fa8d082e48ac856b10af3db14501175dfb61f506f3ec54386151f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Animals</topic><topic>Blood pressure</topic><topic>Brain-derived neurotrophic factor</topic><topic>Cardiomyocytes</topic><topic>Cyclic AMP response element-binding protein</topic><topic>Cytochrome P-450 CYP1B1 - genetics</topic><topic>Cytochrome P-450 CYP1B1 - metabolism</topic><topic>Cytokines</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>Digestive system</topic><topic>DNA</topic><topic>Fibrosis</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hydrocarbons</topic><topic>Hypertension</topic><topic>Hypertrophy</topic><topic>Hypertrophy, Left Ventricular - metabolism</topic><topic>Hypertrophy, Left Ventricular - physiopathology</topic><topic>Inflammation</topic><topic>Kinases</topic><topic>Ligands</topic><topic>MAP kinase</topic><topic>Melatonin</topic><topic>Melatonin - metabolism</topic><topic>Metabolites</topic><topic>Microbiota</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Oxidative stress</topic><topic>Physiology</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Renal function</topic><topic>Review</topic><topic>Roles</topic><topic>Sirtuins - metabolism</topic><topic>Transcription</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, George</creatorcontrib><creatorcontrib>Mazzoccoli, Gianluigi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, George</au><au>Mazzoccoli, Gianluigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-08-20</date><risdate>2019</risdate><volume>20</volume><issue>16</issue><spage>4068</spage><pages>4068-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the 'backward' conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3',5'-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31434333</pmid><doi>10.3390/ijms20164068</doi><orcidid>https://orcid.org/0000-0003-3535-7635</orcidid><orcidid>https://orcid.org/0000-0001-7243-0817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2019-08, Vol.20 (16), p.4068
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720185
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Activation
Animals
Blood pressure
Brain-derived neurotrophic factor
Cardiomyocytes
Cyclic AMP response element-binding protein
Cytochrome P-450 CYP1B1 - genetics
Cytochrome P-450 CYP1B1 - metabolism
Cytokines
Deoxyribonucleic acid
Diabetes
Digestive system
DNA
Fibrosis
Gastrointestinal Microbiome - physiology
Gene expression
Humans
Hydrocarbons
Hypertension
Hypertrophy
Hypertrophy, Left Ventricular - metabolism
Hypertrophy, Left Ventricular - physiopathology
Inflammation
Kinases
Ligands
MAP kinase
Melatonin
Melatonin - metabolism
Metabolites
Microbiota
Mitochondria
Mitochondria - metabolism
Mitogen-Activated Protein Kinases - metabolism
Oxidative stress
Physiology
Protein kinase
Proteins
Renal function
Review
Roles
Sirtuins - metabolism
Transcription
Ventricle
title Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Left%20Ventricular%20Hypertrophy:%20Roles%20of%20Mitochondria%20CYP1B1%20and%20Melatonergic%20Pathways%20in%20Co-Ordinating%20Wider%20Pathophysiology&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Anderson,%20George&rft.date=2019-08-20&rft.volume=20&rft.issue=16&rft.spage=4068&rft.pages=4068-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20164068&rft_dat=%3Cproquest_pubme%3E2333665644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333665644&rft_id=info:pmid/31434333&rfr_iscdi=true