Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology
Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2019-08, Vol.20 (16), p.4068 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 4068 |
container_title | International journal of molecular sciences |
container_volume | 20 |
creator | Anderson, George Mazzoccoli, Gianluigi |
description | Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the 'backward' conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3',5'-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications. |
doi_str_mv | 10.3390/ijms20164068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333665644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a114d2e807fa8d082e48ac856b10af3db14501175dfb61f506f3ec54386151f23</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhS1ERR-wY40ssWHRKb5-xWFRCSJKkVK1QjzEynL8SBxN7GDPgEb8-U5oqQKre6Xz6eieexB6DuSMsSl5HdebSglITqR6hI6AU9oQIieP9_ZDdFzrmhDKqJg-QYcMOOOMsSP0e-5Dh7_61JVo-9YUfDlsfelK3q6GN_hTbn3FOeCr2GW7ysmVaPDs-w28A2ySw1e-NV1OviyjxTemW_0yQ8Ux4VlurouLyXQxLfG36Hz5o-98a8xtXg5P0UEwbfXP7ucJ-nLx_vPssplff_g4eztvLCeqawwAd9QrMglGOaKo58pYJeQCiAnMLYALAjARLiwkBEFkYN4KzpQEAYGyE3R-57vtFxvv7C6safW2xI0pg84m6n-VFFd6mX9qORkfq8Ro8OreoOQfva-d3sRqfdua5HNfNWUAUkwZlyP68j90nfuSxngjxZiUQnI-Uqd3lC251uLDwzFA9K5Vvd_qiL_YD_AA_62R3QJ9ep8B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333665644</pqid></control><display><type>article</type><title>Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Anderson, George ; Mazzoccoli, Gianluigi</creator><creatorcontrib>Anderson, George ; Mazzoccoli, Gianluigi</creatorcontrib><description>Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the 'backward' conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3',5'-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20164068</identifier><identifier>PMID: 31434333</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Activation ; Animals ; Blood pressure ; Brain-derived neurotrophic factor ; Cardiomyocytes ; Cyclic AMP response element-binding protein ; Cytochrome P-450 CYP1B1 - genetics ; Cytochrome P-450 CYP1B1 - metabolism ; Cytokines ; Deoxyribonucleic acid ; Diabetes ; Digestive system ; DNA ; Fibrosis ; Gastrointestinal Microbiome - physiology ; Gene expression ; Humans ; Hydrocarbons ; Hypertension ; Hypertrophy ; Hypertrophy, Left Ventricular - metabolism ; Hypertrophy, Left Ventricular - physiopathology ; Inflammation ; Kinases ; Ligands ; MAP kinase ; Melatonin ; Melatonin - metabolism ; Metabolites ; Microbiota ; Mitochondria ; Mitochondria - metabolism ; Mitogen-Activated Protein Kinases - metabolism ; Oxidative stress ; Physiology ; Protein kinase ; Proteins ; Renal function ; Review ; Roles ; Sirtuins - metabolism ; Transcription ; Ventricle</subject><ispartof>International journal of molecular sciences, 2019-08, Vol.20 (16), p.4068</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a114d2e807fa8d082e48ac856b10af3db14501175dfb61f506f3ec54386151f23</citedby><cites>FETCH-LOGICAL-c408t-a114d2e807fa8d082e48ac856b10af3db14501175dfb61f506f3ec54386151f23</cites><orcidid>0000-0003-3535-7635 ; 0000-0001-7243-0817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720185/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720185/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31434333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, George</creatorcontrib><creatorcontrib>Mazzoccoli, Gianluigi</creatorcontrib><title>Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the 'backward' conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3',5'-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.</description><subject>Activation</subject><subject>Animals</subject><subject>Blood pressure</subject><subject>Brain-derived neurotrophic factor</subject><subject>Cardiomyocytes</subject><subject>Cyclic AMP response element-binding protein</subject><subject>Cytochrome P-450 CYP1B1 - genetics</subject><subject>Cytochrome P-450 CYP1B1 - metabolism</subject><subject>Cytokines</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>Digestive system</subject><subject>DNA</subject><subject>Fibrosis</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hydrocarbons</subject><subject>Hypertension</subject><subject>Hypertrophy</subject><subject>Hypertrophy, Left Ventricular - metabolism</subject><subject>Hypertrophy, Left Ventricular - physiopathology</subject><subject>Inflammation</subject><subject>Kinases</subject><subject>Ligands</subject><subject>MAP kinase</subject><subject>Melatonin</subject><subject>Melatonin - metabolism</subject><subject>Metabolites</subject><subject>Microbiota</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Oxidative stress</subject><subject>Physiology</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Renal function</subject><subject>Review</subject><subject>Roles</subject><subject>Sirtuins - metabolism</subject><subject>Transcription</subject><subject>Ventricle</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUtvEzEUhS1ERR-wY40ssWHRKb5-xWFRCSJKkVK1QjzEynL8SBxN7GDPgEb8-U5oqQKre6Xz6eieexB6DuSMsSl5HdebSglITqR6hI6AU9oQIieP9_ZDdFzrmhDKqJg-QYcMOOOMsSP0e-5Dh7_61JVo-9YUfDlsfelK3q6GN_hTbn3FOeCr2GW7ysmVaPDs-w28A2ySw1e-NV1OviyjxTemW_0yQ8Ux4VlurouLyXQxLfG36Hz5o-98a8xtXg5P0UEwbfXP7ucJ-nLx_vPssplff_g4eztvLCeqawwAd9QrMglGOaKo58pYJeQCiAnMLYALAjARLiwkBEFkYN4KzpQEAYGyE3R-57vtFxvv7C6safW2xI0pg84m6n-VFFd6mX9qORkfq8Ro8OreoOQfva-d3sRqfdua5HNfNWUAUkwZlyP68j90nfuSxngjxZiUQnI-Uqd3lC251uLDwzFA9K5Vvd_qiL_YD_AA_62R3QJ9ep8B</recordid><startdate>20190820</startdate><enddate>20190820</enddate><creator>Anderson, George</creator><creator>Mazzoccoli, Gianluigi</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3535-7635</orcidid><orcidid>https://orcid.org/0000-0001-7243-0817</orcidid></search><sort><creationdate>20190820</creationdate><title>Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology</title><author>Anderson, George ; Mazzoccoli, Gianluigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a114d2e807fa8d082e48ac856b10af3db14501175dfb61f506f3ec54386151f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Animals</topic><topic>Blood pressure</topic><topic>Brain-derived neurotrophic factor</topic><topic>Cardiomyocytes</topic><topic>Cyclic AMP response element-binding protein</topic><topic>Cytochrome P-450 CYP1B1 - genetics</topic><topic>Cytochrome P-450 CYP1B1 - metabolism</topic><topic>Cytokines</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>Digestive system</topic><topic>DNA</topic><topic>Fibrosis</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hydrocarbons</topic><topic>Hypertension</topic><topic>Hypertrophy</topic><topic>Hypertrophy, Left Ventricular - metabolism</topic><topic>Hypertrophy, Left Ventricular - physiopathology</topic><topic>Inflammation</topic><topic>Kinases</topic><topic>Ligands</topic><topic>MAP kinase</topic><topic>Melatonin</topic><topic>Melatonin - metabolism</topic><topic>Metabolites</topic><topic>Microbiota</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Oxidative stress</topic><topic>Physiology</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Renal function</topic><topic>Review</topic><topic>Roles</topic><topic>Sirtuins - metabolism</topic><topic>Transcription</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, George</creatorcontrib><creatorcontrib>Mazzoccoli, Gianluigi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, George</au><au>Mazzoccoli, Gianluigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-08-20</date><risdate>2019</risdate><volume>20</volume><issue>16</issue><spage>4068</spage><pages>4068-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the 'backward' conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3',5'-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31434333</pmid><doi>10.3390/ijms20164068</doi><orcidid>https://orcid.org/0000-0003-3535-7635</orcidid><orcidid>https://orcid.org/0000-0001-7243-0817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2019-08, Vol.20 (16), p.4068 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720185 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Activation Animals Blood pressure Brain-derived neurotrophic factor Cardiomyocytes Cyclic AMP response element-binding protein Cytochrome P-450 CYP1B1 - genetics Cytochrome P-450 CYP1B1 - metabolism Cytokines Deoxyribonucleic acid Diabetes Digestive system DNA Fibrosis Gastrointestinal Microbiome - physiology Gene expression Humans Hydrocarbons Hypertension Hypertrophy Hypertrophy, Left Ventricular - metabolism Hypertrophy, Left Ventricular - physiopathology Inflammation Kinases Ligands MAP kinase Melatonin Melatonin - metabolism Metabolites Microbiota Mitochondria Mitochondria - metabolism Mitogen-Activated Protein Kinases - metabolism Oxidative stress Physiology Protein kinase Proteins Renal function Review Roles Sirtuins - metabolism Transcription Ventricle |
title | Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Left%20Ventricular%20Hypertrophy:%20Roles%20of%20Mitochondria%20CYP1B1%20and%20Melatonergic%20Pathways%20in%20Co-Ordinating%20Wider%20Pathophysiology&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Anderson,%20George&rft.date=2019-08-20&rft.volume=20&rft.issue=16&rft.spage=4068&rft.pages=4068-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20164068&rft_dat=%3Cproquest_pubme%3E2333665644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333665644&rft_id=info:pmid/31434333&rfr_iscdi=true |