Autophosphorylation is sufficient to release Mps1 kinase from native kinetochores
Accurate mitosis depends on a surveillance system called the spindle assembly checkpoint. This checkpoint acts at kinetochores, which attach chromosomes to the dynamic tips of spindle microtubules. When a kinetochore is unattached or improperly attached, the protein kinase Mps1 phosphorylates kineto...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-08, Vol.116 (35), p.17355-17360 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17360 |
---|---|
container_issue | 35 |
container_start_page | 17355 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Koch, Lori B. Opoku, Kwaku N. Deng, Yi Barber, Adrienne Littleton, Aimee J. London, Nitobe Biggins, Sue Asbury, Charles L. |
description | Accurate mitosis depends on a surveillance system called the spindle assembly checkpoint. This checkpoint acts at kinetochores, which attach chromosomes to the dynamic tips of spindle microtubules. When a kinetochore is unattached or improperly attached, the protein kinase Mps1 phosphorylates kinetochore components, catalyzing the generation of a diffusible “wait” signal that delays anaphase and gives the cell time to correct the error. When a kinetochore becomes properly attached, its checkpoint signal is silenced to allow progression into anaphase. Recently, microtubules were found to compete directly against recombinant human Mps1 fragments for binding to the major microtubule-binding kinetochore element Ndc80c, suggesting a direct competition model for silencing the checkpoint signal at properly attached kinetochores. Here, by developing single-particle fluorescence-based assays, we tested whether such direct competition occurs in the context of native kinetochores isolated from yeast. Mps1 levels were not reduced on kinetochore particles bound laterally to the sides of microtubules or on particles tracking processively with disassembling tips. Instead, we found that Mps1 kinase activity was sufficient to promote its release from the isolated kinetochores. Mps1 autophosphorylation, rather than phosphorylation of other kinetochore components, was responsible for this dissociation. Our findings suggest that checkpoint silencing in yeast does not arise from a direct competition between Mps1 and microtubules, and that phosphoregulation of Mps1 may be a critical aspect of the silencing mechanism. |
doi_str_mv | 10.1073/pnas.1901653116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26850761</jstor_id><sourcerecordid>26850761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-96d64dd5c55b2ecca26420fd72aaf629d258e1cec383763d5a5f33a1c3f440fa3</originalsourceid><addsrcrecordid>eNpdkc9LHTEQx0Op1Ffbs6eWhV68rE4y-bF7KYjUtqCI0J5DzCaa577NNtkV_O_N8uyr9TDMkPnMl5l8CTmkcExB4ck4mHxMW6BSIKXyDVlRaGkteQtvyQqAqbrhjO-T9zmvAaAVDbwj-0g5iLZRK3J9Ok9xvIu5RHrszRTiUIVc5dn7YIMbpmqKVXK9M9lVl2Om1X0YltqnuKmGMvDglic3RVskXP5A9rzps_v4nA_I7_Nvv85-1BdX33-enV7UlnOc6lZ2knedsELcMGetYZIz8J1ixnjJ2o6JxlHrLDaoJHbCCI9oqEXPOXiDB-TrVnecbzaus2XVZHo9prAx6VFHE_T_nSHc6dv4oKWiqnxAETh6Fkjxz-zypDchW9f3ZnBxzpoxxRTKEgX98gpdxzkN5bxCNYgoERbBky1lU8w5Ob9bhoJe7NKLXfqfXWXi88sbdvxffwrwaQus8xTTrs9kI0BJik-3G5yU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283336304</pqid></control><display><type>article</type><title>Autophosphorylation is sufficient to release Mps1 kinase from native kinetochores</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Koch, Lori B. ; Opoku, Kwaku N. ; Deng, Yi ; Barber, Adrienne ; Littleton, Aimee J. ; London, Nitobe ; Biggins, Sue ; Asbury, Charles L.</creator><creatorcontrib>Koch, Lori B. ; Opoku, Kwaku N. ; Deng, Yi ; Barber, Adrienne ; Littleton, Aimee J. ; London, Nitobe ; Biggins, Sue ; Asbury, Charles L.</creatorcontrib><description>Accurate mitosis depends on a surveillance system called the spindle assembly checkpoint. This checkpoint acts at kinetochores, which attach chromosomes to the dynamic tips of spindle microtubules. When a kinetochore is unattached or improperly attached, the protein kinase Mps1 phosphorylates kinetochore components, catalyzing the generation of a diffusible “wait” signal that delays anaphase and gives the cell time to correct the error. When a kinetochore becomes properly attached, its checkpoint signal is silenced to allow progression into anaphase. Recently, microtubules were found to compete directly against recombinant human Mps1 fragments for binding to the major microtubule-binding kinetochore element Ndc80c, suggesting a direct competition model for silencing the checkpoint signal at properly attached kinetochores. Here, by developing single-particle fluorescence-based assays, we tested whether such direct competition occurs in the context of native kinetochores isolated from yeast. Mps1 levels were not reduced on kinetochore particles bound laterally to the sides of microtubules or on particles tracking processively with disassembling tips. Instead, we found that Mps1 kinase activity was sufficient to promote its release from the isolated kinetochores. Mps1 autophosphorylation, rather than phosphorylation of other kinetochore components, was responsible for this dissociation. Our findings suggest that checkpoint silencing in yeast does not arise from a direct competition between Mps1 and microtubules, and that phosphoregulation of Mps1 may be a critical aspect of the silencing mechanism.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901653116</identifier><identifier>PMID: 31405987</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anaphase ; Binding ; Biological Sciences ; Chromosomes ; Competition ; Dismantling ; Error correction ; Fluorescence ; Fungal Proteins - metabolism ; Humans ; Kinases ; Kinetochores ; Kinetochores - chemistry ; Kinetochores - metabolism ; Microtubules ; Microtubules - metabolism ; Mitosis ; Models, Biological ; Phosphorylation ; Physical Sciences ; Protein Binding ; Protein kinase ; Protein-Serine-Threonine Kinases - metabolism ; Saccharomycetales - metabolism ; Tips ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (35), p.17355-17360</ispartof><rights>Copyright National Academy of Sciences Aug 27, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-96d64dd5c55b2ecca26420fd72aaf629d258e1cec383763d5a5f33a1c3f440fa3</citedby><cites>FETCH-LOGICAL-c443t-96d64dd5c55b2ecca26420fd72aaf629d258e1cec383763d5a5f33a1c3f440fa3</cites><orcidid>0000-0002-0143-5394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26850761$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26850761$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31405987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koch, Lori B.</creatorcontrib><creatorcontrib>Opoku, Kwaku N.</creatorcontrib><creatorcontrib>Deng, Yi</creatorcontrib><creatorcontrib>Barber, Adrienne</creatorcontrib><creatorcontrib>Littleton, Aimee J.</creatorcontrib><creatorcontrib>London, Nitobe</creatorcontrib><creatorcontrib>Biggins, Sue</creatorcontrib><creatorcontrib>Asbury, Charles L.</creatorcontrib><title>Autophosphorylation is sufficient to release Mps1 kinase from native kinetochores</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Accurate mitosis depends on a surveillance system called the spindle assembly checkpoint. This checkpoint acts at kinetochores, which attach chromosomes to the dynamic tips of spindle microtubules. When a kinetochore is unattached or improperly attached, the protein kinase Mps1 phosphorylates kinetochore components, catalyzing the generation of a diffusible “wait” signal that delays anaphase and gives the cell time to correct the error. When a kinetochore becomes properly attached, its checkpoint signal is silenced to allow progression into anaphase. Recently, microtubules were found to compete directly against recombinant human Mps1 fragments for binding to the major microtubule-binding kinetochore element Ndc80c, suggesting a direct competition model for silencing the checkpoint signal at properly attached kinetochores. Here, by developing single-particle fluorescence-based assays, we tested whether such direct competition occurs in the context of native kinetochores isolated from yeast. Mps1 levels were not reduced on kinetochore particles bound laterally to the sides of microtubules or on particles tracking processively with disassembling tips. Instead, we found that Mps1 kinase activity was sufficient to promote its release from the isolated kinetochores. Mps1 autophosphorylation, rather than phosphorylation of other kinetochore components, was responsible for this dissociation. Our findings suggest that checkpoint silencing in yeast does not arise from a direct competition between Mps1 and microtubules, and that phosphoregulation of Mps1 may be a critical aspect of the silencing mechanism.</description><subject>Anaphase</subject><subject>Binding</subject><subject>Biological Sciences</subject><subject>Chromosomes</subject><subject>Competition</subject><subject>Dismantling</subject><subject>Error correction</subject><subject>Fluorescence</subject><subject>Fungal Proteins - metabolism</subject><subject>Humans</subject><subject>Kinases</subject><subject>Kinetochores</subject><subject>Kinetochores - chemistry</subject><subject>Kinetochores - metabolism</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Mitosis</subject><subject>Models, Biological</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>Protein kinase</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Saccharomycetales - metabolism</subject><subject>Tips</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9LHTEQx0Op1Ffbs6eWhV68rE4y-bF7KYjUtqCI0J5DzCaa577NNtkV_O_N8uyr9TDMkPnMl5l8CTmkcExB4ck4mHxMW6BSIKXyDVlRaGkteQtvyQqAqbrhjO-T9zmvAaAVDbwj-0g5iLZRK3J9Ok9xvIu5RHrszRTiUIVc5dn7YIMbpmqKVXK9M9lVl2Om1X0YltqnuKmGMvDglic3RVskXP5A9rzps_v4nA_I7_Nvv85-1BdX33-enV7UlnOc6lZ2knedsELcMGetYZIz8J1ixnjJ2o6JxlHrLDaoJHbCCI9oqEXPOXiDB-TrVnecbzaus2XVZHo9prAx6VFHE_T_nSHc6dv4oKWiqnxAETh6Fkjxz-zypDchW9f3ZnBxzpoxxRTKEgX98gpdxzkN5bxCNYgoERbBky1lU8w5Ob9bhoJe7NKLXfqfXWXi88sbdvxffwrwaQus8xTTrs9kI0BJik-3G5yU</recordid><startdate>20190827</startdate><enddate>20190827</enddate><creator>Koch, Lori B.</creator><creator>Opoku, Kwaku N.</creator><creator>Deng, Yi</creator><creator>Barber, Adrienne</creator><creator>Littleton, Aimee J.</creator><creator>London, Nitobe</creator><creator>Biggins, Sue</creator><creator>Asbury, Charles L.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0143-5394</orcidid></search><sort><creationdate>20190827</creationdate><title>Autophosphorylation is sufficient to release Mps1 kinase from native kinetochores</title><author>Koch, Lori B. ; Opoku, Kwaku N. ; Deng, Yi ; Barber, Adrienne ; Littleton, Aimee J. ; London, Nitobe ; Biggins, Sue ; Asbury, Charles L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-96d64dd5c55b2ecca26420fd72aaf629d258e1cec383763d5a5f33a1c3f440fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anaphase</topic><topic>Binding</topic><topic>Biological Sciences</topic><topic>Chromosomes</topic><topic>Competition</topic><topic>Dismantling</topic><topic>Error correction</topic><topic>Fluorescence</topic><topic>Fungal Proteins - metabolism</topic><topic>Humans</topic><topic>Kinases</topic><topic>Kinetochores</topic><topic>Kinetochores - chemistry</topic><topic>Kinetochores - metabolism</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Mitosis</topic><topic>Models, Biological</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>Protein kinase</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Saccharomycetales - metabolism</topic><topic>Tips</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Lori B.</creatorcontrib><creatorcontrib>Opoku, Kwaku N.</creatorcontrib><creatorcontrib>Deng, Yi</creatorcontrib><creatorcontrib>Barber, Adrienne</creatorcontrib><creatorcontrib>Littleton, Aimee J.</creatorcontrib><creatorcontrib>London, Nitobe</creatorcontrib><creatorcontrib>Biggins, Sue</creatorcontrib><creatorcontrib>Asbury, Charles L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Lori B.</au><au>Opoku, Kwaku N.</au><au>Deng, Yi</au><au>Barber, Adrienne</au><au>Littleton, Aimee J.</au><au>London, Nitobe</au><au>Biggins, Sue</au><au>Asbury, Charles L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophosphorylation is sufficient to release Mps1 kinase from native kinetochores</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-08-27</date><risdate>2019</risdate><volume>116</volume><issue>35</issue><spage>17355</spage><epage>17360</epage><pages>17355-17360</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Accurate mitosis depends on a surveillance system called the spindle assembly checkpoint. This checkpoint acts at kinetochores, which attach chromosomes to the dynamic tips of spindle microtubules. When a kinetochore is unattached or improperly attached, the protein kinase Mps1 phosphorylates kinetochore components, catalyzing the generation of a diffusible “wait” signal that delays anaphase and gives the cell time to correct the error. When a kinetochore becomes properly attached, its checkpoint signal is silenced to allow progression into anaphase. Recently, microtubules were found to compete directly against recombinant human Mps1 fragments for binding to the major microtubule-binding kinetochore element Ndc80c, suggesting a direct competition model for silencing the checkpoint signal at properly attached kinetochores. Here, by developing single-particle fluorescence-based assays, we tested whether such direct competition occurs in the context of native kinetochores isolated from yeast. Mps1 levels were not reduced on kinetochore particles bound laterally to the sides of microtubules or on particles tracking processively with disassembling tips. Instead, we found that Mps1 kinase activity was sufficient to promote its release from the isolated kinetochores. Mps1 autophosphorylation, rather than phosphorylation of other kinetochore components, was responsible for this dissociation. Our findings suggest that checkpoint silencing in yeast does not arise from a direct competition between Mps1 and microtubules, and that phosphoregulation of Mps1 may be a critical aspect of the silencing mechanism.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31405987</pmid><doi>10.1073/pnas.1901653116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0143-5394</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (35), p.17355-17360 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717314 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Anaphase Binding Biological Sciences Chromosomes Competition Dismantling Error correction Fluorescence Fungal Proteins - metabolism Humans Kinases Kinetochores Kinetochores - chemistry Kinetochores - metabolism Microtubules Microtubules - metabolism Mitosis Models, Biological Phosphorylation Physical Sciences Protein Binding Protein kinase Protein-Serine-Threonine Kinases - metabolism Saccharomycetales - metabolism Tips Yeast Yeasts |
title | Autophosphorylation is sufficient to release Mps1 kinase from native kinetochores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophosphorylation%20is%20sufficient%20to%20release%20Mps1%20kinase%20from%20native%20kinetochores&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Koch,%20Lori%20B.&rft.date=2019-08-27&rft.volume=116&rft.issue=35&rft.spage=17355&rft.epage=17360&rft.pages=17355-17360&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901653116&rft_dat=%3Cjstor_pubme%3E26850761%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283336304&rft_id=info:pmid/31405987&rft_jstor_id=26850761&rfr_iscdi=true |