Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter
The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl⁻ channels and Cl⁻/H⁺ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-08, Vol.116 (35), p.17345-17354 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17354 |
---|---|
container_issue | 35 |
container_start_page | 17345 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Park, Kunwoong Lee, Byoung-Cheol Lim, Hyun-Ho |
description | The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl⁻ channels and Cl⁻/H⁺ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Gluₑₓ, could explain the transport cycle of CLC-type Cl⁻/H⁺ antiporters. However, the presence of multiple conformations (Up, Middle, and Down) of the Gluₑₓ has been suggested from combined structural snapshots of 2 different CLC antiporters: CLC-ec1 from Escherichia coli and cmCLC from a thermophilic red alga, Cyanidioschyzon merolae. Thus, we aimed to investigate further the heterogeneity of Gluₑₓ-conformations in CLC-ec1, the most deeply studied CLC antiporter, at both functional and structural levels. Here, we show that the crystal structures of the Gluₑₓ mutant E148D and wild-type CLC-ec1 with varying anion concentrations suggest a structural intermediate, the “Midlow” conformation. We also found that an extra anion can be located above the external Cl⁻-binding site in the E148D mutant when the anion concentration is high. Moreover, we observed that a carboxylate in solution can occupy either the external or central Cl⁻-binding site in the ungated E148A mutant using an anomalously detectable short carboxylic acid, bromoacetate. These results lend credibility to the idea that the Gluₑₓ can take at least 3 distinct conformational states during the transport cycle of a single CLC antiporter. |
doi_str_mv | 10.1073/pnas.1901822116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26850760</jstor_id><sourcerecordid>26850760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c1cf6ec6c153be8cdf4ef1f21533c1a6191324de4002c595674c057b517e23103</originalsourceid><addsrcrecordid>eNpdkc-OFCEQxonRuOPq2ZOGxIuX3qGAhuZiYibqmozxomfC0PTIpAdGoFc97sl30rfZJ5HOrOOfA6lQ9auPKj6EHgO5ACLZ8hBMvgBFoKMUQNxBCyAKGsEVuYsWhFDZdJzyM_Qg5x0hRLUduY_OGHCiJGkX6Pu7qZjiY8BxwO5rcSmYEW_Hmt2b4nBy2ffTHK-cGTM2OLgv2IcK7l3vZ6QkE_IhpoJzme8m9PXMkhsfeh-2OPua9qE2r9YrvBpvrn8uL2-uf1Ss-LnTpYfo3lD13aPbeI4-vn71YXXZrN-_ebt6uW4s56w0FuwgnBUWWrZxne0H7gYYaL0yC0aAAkZ573hd3baqFZJb0spNC9JRBoSdoxdH3cO0qQtYF-r4oz4kvzfpm47G638rwX_S23ilhQRJlaoCz28FUvw8uVz03mfrxtEEF6esKZWMElEfq-iz_9BdnOb_namOMapA8Eotj5RNMefkhtMwQPRssp5N1n9Mrh1P_97hxP92tQJPjsAul5hOdSq6lkhB2C8SqrBo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283329164</pqid></control><display><type>article</type><title>Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Park, Kunwoong ; Lee, Byoung-Cheol ; Lim, Hyun-Ho</creator><creatorcontrib>Park, Kunwoong ; Lee, Byoung-Cheol ; Lim, Hyun-Ho</creatorcontrib><description>The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl⁻ channels and Cl⁻/H⁺ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Gluₑₓ, could explain the transport cycle of CLC-type Cl⁻/H⁺ antiporters. However, the presence of multiple conformations (Up, Middle, and Down) of the Gluₑₓ has been suggested from combined structural snapshots of 2 different CLC antiporters: CLC-ec1 from Escherichia coli and cmCLC from a thermophilic red alga, Cyanidioschyzon merolae. Thus, we aimed to investigate further the heterogeneity of Gluₑₓ-conformations in CLC-ec1, the most deeply studied CLC antiporter, at both functional and structural levels. Here, we show that the crystal structures of the Gluₑₓ mutant E148D and wild-type CLC-ec1 with varying anion concentrations suggest a structural intermediate, the “Midlow” conformation. We also found that an extra anion can be located above the external Cl⁻-binding site in the E148D mutant when the anion concentration is high. Moreover, we observed that a carboxylate in solution can occupy either the external or central Cl⁻-binding site in the ungated E148A mutant using an anomalously detectable short carboxylic acid, bromoacetate. These results lend credibility to the idea that the Gluₑₓ can take at least 3 distinct conformational states during the transport cycle of a single CLC antiporter.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901822116</identifier><identifier>PMID: 31409705</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Substitution ; Anions ; Anions - metabolism ; Antiporters - chemistry ; Antiporters - genetics ; Antiporters - metabolism ; Binding Sites ; Biological Sciences ; Biological Transport ; Carboxylic acids ; Chloride Channels - chemistry ; Chloride Channels - metabolism ; Conformation ; Crystal structure ; E coli ; Glutamic Acid - chemistry ; Glutamic Acid - genetics ; Heterogeneity ; Hydrogen ; Models, Molecular ; Molecular Conformation ; Mutation ; PNAS Plus ; Protein Binding ; Proteins ; Structure-function relationships ; Transport</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (35), p.17345-17354</ispartof><rights>Copyright National Academy of Sciences Aug 27, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c1cf6ec6c153be8cdf4ef1f21533c1a6191324de4002c595674c057b517e23103</citedby><cites>FETCH-LOGICAL-c443t-c1cf6ec6c153be8cdf4ef1f21533c1a6191324de4002c595674c057b517e23103</cites><orcidid>0000-0002-5477-5640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26850760$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26850760$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31409705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Kunwoong</creatorcontrib><creatorcontrib>Lee, Byoung-Cheol</creatorcontrib><creatorcontrib>Lim, Hyun-Ho</creatorcontrib><title>Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl⁻ channels and Cl⁻/H⁺ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Gluₑₓ, could explain the transport cycle of CLC-type Cl⁻/H⁺ antiporters. However, the presence of multiple conformations (Up, Middle, and Down) of the Gluₑₓ has been suggested from combined structural snapshots of 2 different CLC antiporters: CLC-ec1 from Escherichia coli and cmCLC from a thermophilic red alga, Cyanidioschyzon merolae. Thus, we aimed to investigate further the heterogeneity of Gluₑₓ-conformations in CLC-ec1, the most deeply studied CLC antiporter, at both functional and structural levels. Here, we show that the crystal structures of the Gluₑₓ mutant E148D and wild-type CLC-ec1 with varying anion concentrations suggest a structural intermediate, the “Midlow” conformation. We also found that an extra anion can be located above the external Cl⁻-binding site in the E148D mutant when the anion concentration is high. Moreover, we observed that a carboxylate in solution can occupy either the external or central Cl⁻-binding site in the ungated E148A mutant using an anomalously detectable short carboxylic acid, bromoacetate. These results lend credibility to the idea that the Gluₑₓ can take at least 3 distinct conformational states during the transport cycle of a single CLC antiporter.</description><subject>Amino Acid Substitution</subject><subject>Anions</subject><subject>Anions - metabolism</subject><subject>Antiporters - chemistry</subject><subject>Antiporters - genetics</subject><subject>Antiporters - metabolism</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Carboxylic acids</subject><subject>Chloride Channels - chemistry</subject><subject>Chloride Channels - metabolism</subject><subject>Conformation</subject><subject>Crystal structure</subject><subject>E coli</subject><subject>Glutamic Acid - chemistry</subject><subject>Glutamic Acid - genetics</subject><subject>Heterogeneity</subject><subject>Hydrogen</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Mutation</subject><subject>PNAS Plus</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Structure-function relationships</subject><subject>Transport</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc-OFCEQxonRuOPq2ZOGxIuX3qGAhuZiYibqmozxomfC0PTIpAdGoFc97sl30rfZJ5HOrOOfA6lQ9auPKj6EHgO5ACLZ8hBMvgBFoKMUQNxBCyAKGsEVuYsWhFDZdJzyM_Qg5x0hRLUduY_OGHCiJGkX6Pu7qZjiY8BxwO5rcSmYEW_Hmt2b4nBy2ffTHK-cGTM2OLgv2IcK7l3vZ6QkE_IhpoJzme8m9PXMkhsfeh-2OPua9qE2r9YrvBpvrn8uL2-uf1Ss-LnTpYfo3lD13aPbeI4-vn71YXXZrN-_ebt6uW4s56w0FuwgnBUWWrZxne0H7gYYaL0yC0aAAkZ573hd3baqFZJb0spNC9JRBoSdoxdH3cO0qQtYF-r4oz4kvzfpm47G638rwX_S23ilhQRJlaoCz28FUvw8uVz03mfrxtEEF6esKZWMElEfq-iz_9BdnOb_namOMapA8Eotj5RNMefkhtMwQPRssp5N1n9Mrh1P_97hxP92tQJPjsAul5hOdSq6lkhB2C8SqrBo</recordid><startdate>20190827</startdate><enddate>20190827</enddate><creator>Park, Kunwoong</creator><creator>Lee, Byoung-Cheol</creator><creator>Lim, Hyun-Ho</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5477-5640</orcidid></search><sort><creationdate>20190827</creationdate><title>Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter</title><author>Park, Kunwoong ; Lee, Byoung-Cheol ; Lim, Hyun-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c1cf6ec6c153be8cdf4ef1f21533c1a6191324de4002c595674c057b517e23103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acid Substitution</topic><topic>Anions</topic><topic>Anions - metabolism</topic><topic>Antiporters - chemistry</topic><topic>Antiporters - genetics</topic><topic>Antiporters - metabolism</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Carboxylic acids</topic><topic>Chloride Channels - chemistry</topic><topic>Chloride Channels - metabolism</topic><topic>Conformation</topic><topic>Crystal structure</topic><topic>E coli</topic><topic>Glutamic Acid - chemistry</topic><topic>Glutamic Acid - genetics</topic><topic>Heterogeneity</topic><topic>Hydrogen</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Mutation</topic><topic>PNAS Plus</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Structure-function relationships</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kunwoong</creatorcontrib><creatorcontrib>Lee, Byoung-Cheol</creatorcontrib><creatorcontrib>Lim, Hyun-Ho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kunwoong</au><au>Lee, Byoung-Cheol</au><au>Lim, Hyun-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-08-27</date><risdate>2019</risdate><volume>116</volume><issue>35</issue><spage>17345</spage><epage>17354</epage><pages>17345-17354</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl⁻ channels and Cl⁻/H⁺ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Gluₑₓ, could explain the transport cycle of CLC-type Cl⁻/H⁺ antiporters. However, the presence of multiple conformations (Up, Middle, and Down) of the Gluₑₓ has been suggested from combined structural snapshots of 2 different CLC antiporters: CLC-ec1 from Escherichia coli and cmCLC from a thermophilic red alga, Cyanidioschyzon merolae. Thus, we aimed to investigate further the heterogeneity of Gluₑₓ-conformations in CLC-ec1, the most deeply studied CLC antiporter, at both functional and structural levels. Here, we show that the crystal structures of the Gluₑₓ mutant E148D and wild-type CLC-ec1 with varying anion concentrations suggest a structural intermediate, the “Midlow” conformation. We also found that an extra anion can be located above the external Cl⁻-binding site in the E148D mutant when the anion concentration is high. Moreover, we observed that a carboxylate in solution can occupy either the external or central Cl⁻-binding site in the ungated E148A mutant using an anomalously detectable short carboxylic acid, bromoacetate. These results lend credibility to the idea that the Gluₑₓ can take at least 3 distinct conformational states during the transport cycle of a single CLC antiporter.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31409705</pmid><doi>10.1073/pnas.1901822116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5477-5640</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (35), p.17345-17354 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717299 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Substitution Anions Anions - metabolism Antiporters - chemistry Antiporters - genetics Antiporters - metabolism Binding Sites Biological Sciences Biological Transport Carboxylic acids Chloride Channels - chemistry Chloride Channels - metabolism Conformation Crystal structure E coli Glutamic Acid - chemistry Glutamic Acid - genetics Heterogeneity Hydrogen Models, Molecular Molecular Conformation Mutation PNAS Plus Protein Binding Proteins Structure-function relationships Transport |
title | Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutation%20of%20external%20glutamate%20residue%20reveals%20a%20new%20intermediate%20transport%20state%20and%20anion%20binding%20site%20in%20a%20CLC%20Cl%E2%81%BB/H%E2%81%BA%20antiporter&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Park,%20Kunwoong&rft.date=2019-08-27&rft.volume=116&rft.issue=35&rft.spage=17345&rft.epage=17354&rft.pages=17345-17354&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901822116&rft_dat=%3Cjstor_pubme%3E26850760%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283329164&rft_id=info:pmid/31409705&rft_jstor_id=26850760&rfr_iscdi=true |