Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter

The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl⁻ channels and Cl⁻/H⁺ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-08, Vol.116 (35), p.17345-17354
Hauptverfasser: Park, Kunwoong, Lee, Byoung-Cheol, Lim, Hyun-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17354
container_issue 35
container_start_page 17345
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Park, Kunwoong
Lee, Byoung-Cheol
Lim, Hyun-Ho
description The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl⁻ channels and Cl⁻/H⁺ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Gluₑₓ, could explain the transport cycle of CLC-type Cl⁻/H⁺ antiporters. However, the presence of multiple conformations (Up, Middle, and Down) of the Gluₑₓ has been suggested from combined structural snapshots of 2 different CLC antiporters: CLC-ec1 from Escherichia coli and cmCLC from a thermophilic red alga, Cyanidioschyzon merolae. Thus, we aimed to investigate further the heterogeneity of Gluₑₓ-conformations in CLC-ec1, the most deeply studied CLC antiporter, at both functional and structural levels. Here, we show that the crystal structures of the Gluₑₓ mutant E148D and wild-type CLC-ec1 with varying anion concentrations suggest a structural intermediate, the “Midlow” conformation. We also found that an extra anion can be located above the external Cl⁻-binding site in the E148D mutant when the anion concentration is high. Moreover, we observed that a carboxylate in solution can occupy either the external or central Cl⁻-binding site in the ungated E148A mutant using an anomalously detectable short carboxylic acid, bromoacetate. These results lend credibility to the idea that the Gluₑₓ can take at least 3 distinct conformational states during the transport cycle of a single CLC antiporter.
doi_str_mv 10.1073/pnas.1901822116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26850760</jstor_id><sourcerecordid>26850760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c1cf6ec6c153be8cdf4ef1f21533c1a6191324de4002c595674c057b517e23103</originalsourceid><addsrcrecordid>eNpdkc-OFCEQxonRuOPq2ZOGxIuX3qGAhuZiYibqmozxomfC0PTIpAdGoFc97sl30rfZJ5HOrOOfA6lQ9auPKj6EHgO5ACLZ8hBMvgBFoKMUQNxBCyAKGsEVuYsWhFDZdJzyM_Qg5x0hRLUduY_OGHCiJGkX6Pu7qZjiY8BxwO5rcSmYEW_Hmt2b4nBy2ffTHK-cGTM2OLgv2IcK7l3vZ6QkE_IhpoJzme8m9PXMkhsfeh-2OPua9qE2r9YrvBpvrn8uL2-uf1Ss-LnTpYfo3lD13aPbeI4-vn71YXXZrN-_ebt6uW4s56w0FuwgnBUWWrZxne0H7gYYaL0yC0aAAkZ573hd3baqFZJb0spNC9JRBoSdoxdH3cO0qQtYF-r4oz4kvzfpm47G638rwX_S23ilhQRJlaoCz28FUvw8uVz03mfrxtEEF6esKZWMElEfq-iz_9BdnOb_namOMapA8Eotj5RNMefkhtMwQPRssp5N1n9Mrh1P_97hxP92tQJPjsAul5hOdSq6lkhB2C8SqrBo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283329164</pqid></control><display><type>article</type><title>Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Park, Kunwoong ; Lee, Byoung-Cheol ; Lim, Hyun-Ho</creator><creatorcontrib>Park, Kunwoong ; Lee, Byoung-Cheol ; Lim, Hyun-Ho</creatorcontrib><description>The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl⁻ channels and Cl⁻/H⁺ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Gluₑₓ, could explain the transport cycle of CLC-type Cl⁻/H⁺ antiporters. However, the presence of multiple conformations (Up, Middle, and Down) of the Gluₑₓ has been suggested from combined structural snapshots of 2 different CLC antiporters: CLC-ec1 from Escherichia coli and cmCLC from a thermophilic red alga, Cyanidioschyzon merolae. Thus, we aimed to investigate further the heterogeneity of Gluₑₓ-conformations in CLC-ec1, the most deeply studied CLC antiporter, at both functional and structural levels. Here, we show that the crystal structures of the Gluₑₓ mutant E148D and wild-type CLC-ec1 with varying anion concentrations suggest a structural intermediate, the “Midlow” conformation. We also found that an extra anion can be located above the external Cl⁻-binding site in the E148D mutant when the anion concentration is high. Moreover, we observed that a carboxylate in solution can occupy either the external or central Cl⁻-binding site in the ungated E148A mutant using an anomalously detectable short carboxylic acid, bromoacetate. These results lend credibility to the idea that the Gluₑₓ can take at least 3 distinct conformational states during the transport cycle of a single CLC antiporter.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901822116</identifier><identifier>PMID: 31409705</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Substitution ; Anions ; Anions - metabolism ; Antiporters - chemistry ; Antiporters - genetics ; Antiporters - metabolism ; Binding Sites ; Biological Sciences ; Biological Transport ; Carboxylic acids ; Chloride Channels - chemistry ; Chloride Channels - metabolism ; Conformation ; Crystal structure ; E coli ; Glutamic Acid - chemistry ; Glutamic Acid - genetics ; Heterogeneity ; Hydrogen ; Models, Molecular ; Molecular Conformation ; Mutation ; PNAS Plus ; Protein Binding ; Proteins ; Structure-function relationships ; Transport</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (35), p.17345-17354</ispartof><rights>Copyright National Academy of Sciences Aug 27, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c1cf6ec6c153be8cdf4ef1f21533c1a6191324de4002c595674c057b517e23103</citedby><cites>FETCH-LOGICAL-c443t-c1cf6ec6c153be8cdf4ef1f21533c1a6191324de4002c595674c057b517e23103</cites><orcidid>0000-0002-5477-5640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26850760$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26850760$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31409705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Kunwoong</creatorcontrib><creatorcontrib>Lee, Byoung-Cheol</creatorcontrib><creatorcontrib>Lim, Hyun-Ho</creatorcontrib><title>Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl⁻ channels and Cl⁻/H⁺ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Gluₑₓ, could explain the transport cycle of CLC-type Cl⁻/H⁺ antiporters. However, the presence of multiple conformations (Up, Middle, and Down) of the Gluₑₓ has been suggested from combined structural snapshots of 2 different CLC antiporters: CLC-ec1 from Escherichia coli and cmCLC from a thermophilic red alga, Cyanidioschyzon merolae. Thus, we aimed to investigate further the heterogeneity of Gluₑₓ-conformations in CLC-ec1, the most deeply studied CLC antiporter, at both functional and structural levels. Here, we show that the crystal structures of the Gluₑₓ mutant E148D and wild-type CLC-ec1 with varying anion concentrations suggest a structural intermediate, the “Midlow” conformation. We also found that an extra anion can be located above the external Cl⁻-binding site in the E148D mutant when the anion concentration is high. Moreover, we observed that a carboxylate in solution can occupy either the external or central Cl⁻-binding site in the ungated E148A mutant using an anomalously detectable short carboxylic acid, bromoacetate. These results lend credibility to the idea that the Gluₑₓ can take at least 3 distinct conformational states during the transport cycle of a single CLC antiporter.</description><subject>Amino Acid Substitution</subject><subject>Anions</subject><subject>Anions - metabolism</subject><subject>Antiporters - chemistry</subject><subject>Antiporters - genetics</subject><subject>Antiporters - metabolism</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Carboxylic acids</subject><subject>Chloride Channels - chemistry</subject><subject>Chloride Channels - metabolism</subject><subject>Conformation</subject><subject>Crystal structure</subject><subject>E coli</subject><subject>Glutamic Acid - chemistry</subject><subject>Glutamic Acid - genetics</subject><subject>Heterogeneity</subject><subject>Hydrogen</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Mutation</subject><subject>PNAS Plus</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Structure-function relationships</subject><subject>Transport</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc-OFCEQxonRuOPq2ZOGxIuX3qGAhuZiYibqmozxomfC0PTIpAdGoFc97sl30rfZJ5HOrOOfA6lQ9auPKj6EHgO5ACLZ8hBMvgBFoKMUQNxBCyAKGsEVuYsWhFDZdJzyM_Qg5x0hRLUduY_OGHCiJGkX6Pu7qZjiY8BxwO5rcSmYEW_Hmt2b4nBy2ffTHK-cGTM2OLgv2IcK7l3vZ6QkE_IhpoJzme8m9PXMkhsfeh-2OPua9qE2r9YrvBpvrn8uL2-uf1Ss-LnTpYfo3lD13aPbeI4-vn71YXXZrN-_ebt6uW4s56w0FuwgnBUWWrZxne0H7gYYaL0yC0aAAkZ573hd3baqFZJb0spNC9JRBoSdoxdH3cO0qQtYF-r4oz4kvzfpm47G638rwX_S23ilhQRJlaoCz28FUvw8uVz03mfrxtEEF6esKZWMElEfq-iz_9BdnOb_namOMapA8Eotj5RNMefkhtMwQPRssp5N1n9Mrh1P_97hxP92tQJPjsAul5hOdSq6lkhB2C8SqrBo</recordid><startdate>20190827</startdate><enddate>20190827</enddate><creator>Park, Kunwoong</creator><creator>Lee, Byoung-Cheol</creator><creator>Lim, Hyun-Ho</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5477-5640</orcidid></search><sort><creationdate>20190827</creationdate><title>Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter</title><author>Park, Kunwoong ; Lee, Byoung-Cheol ; Lim, Hyun-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c1cf6ec6c153be8cdf4ef1f21533c1a6191324de4002c595674c057b517e23103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acid Substitution</topic><topic>Anions</topic><topic>Anions - metabolism</topic><topic>Antiporters - chemistry</topic><topic>Antiporters - genetics</topic><topic>Antiporters - metabolism</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Carboxylic acids</topic><topic>Chloride Channels - chemistry</topic><topic>Chloride Channels - metabolism</topic><topic>Conformation</topic><topic>Crystal structure</topic><topic>E coli</topic><topic>Glutamic Acid - chemistry</topic><topic>Glutamic Acid - genetics</topic><topic>Heterogeneity</topic><topic>Hydrogen</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Mutation</topic><topic>PNAS Plus</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Structure-function relationships</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kunwoong</creatorcontrib><creatorcontrib>Lee, Byoung-Cheol</creatorcontrib><creatorcontrib>Lim, Hyun-Ho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kunwoong</au><au>Lee, Byoung-Cheol</au><au>Lim, Hyun-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-08-27</date><risdate>2019</risdate><volume>116</volume><issue>35</issue><spage>17345</spage><epage>17354</epage><pages>17345-17354</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl⁻ channels and Cl⁻/H⁺ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Gluₑₓ, could explain the transport cycle of CLC-type Cl⁻/H⁺ antiporters. However, the presence of multiple conformations (Up, Middle, and Down) of the Gluₑₓ has been suggested from combined structural snapshots of 2 different CLC antiporters: CLC-ec1 from Escherichia coli and cmCLC from a thermophilic red alga, Cyanidioschyzon merolae. Thus, we aimed to investigate further the heterogeneity of Gluₑₓ-conformations in CLC-ec1, the most deeply studied CLC antiporter, at both functional and structural levels. Here, we show that the crystal structures of the Gluₑₓ mutant E148D and wild-type CLC-ec1 with varying anion concentrations suggest a structural intermediate, the “Midlow” conformation. We also found that an extra anion can be located above the external Cl⁻-binding site in the E148D mutant when the anion concentration is high. Moreover, we observed that a carboxylate in solution can occupy either the external or central Cl⁻-binding site in the ungated E148A mutant using an anomalously detectable short carboxylic acid, bromoacetate. These results lend credibility to the idea that the Gluₑₓ can take at least 3 distinct conformational states during the transport cycle of a single CLC antiporter.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31409705</pmid><doi>10.1073/pnas.1901822116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5477-5640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (35), p.17345-17354
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717299
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Substitution
Anions
Anions - metabolism
Antiporters - chemistry
Antiporters - genetics
Antiporters - metabolism
Binding Sites
Biological Sciences
Biological Transport
Carboxylic acids
Chloride Channels - chemistry
Chloride Channels - metabolism
Conformation
Crystal structure
E coli
Glutamic Acid - chemistry
Glutamic Acid - genetics
Heterogeneity
Hydrogen
Models, Molecular
Molecular Conformation
Mutation
PNAS Plus
Protein Binding
Proteins
Structure-function relationships
Transport
title Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl⁻/H⁺ antiporter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutation%20of%20external%20glutamate%20residue%20reveals%20a%20new%20intermediate%20transport%20state%20and%20anion%20binding%20site%20in%20a%20CLC%20Cl%E2%81%BB/H%E2%81%BA%20antiporter&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Park,%20Kunwoong&rft.date=2019-08-27&rft.volume=116&rft.issue=35&rft.spage=17345&rft.epage=17354&rft.pages=17345-17354&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901822116&rft_dat=%3Cjstor_pubme%3E26850760%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283329164&rft_id=info:pmid/31409705&rft_jstor_id=26850760&rfr_iscdi=true