ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer

Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-08, Vol.116 (35), p.17450-17459
Hauptverfasser: Hashimoto, Shigeru, Furukawa, Shotaro, Hashimoto, Ari, Tsutaho, Akio, Fukao, Akira, Sakamura, Yurika, Parajuli, Gyanu, Onodera, Yasuhito, Otsuka, Yutaro, Handa, Haruka, Oikawa, Tsukasa, Hata, Soichiro, Nishikawa, Yoshihiro, Mizukami, Yusuke, Kodama, Yuzo, Murakami, Masaaki, Fujiwara, Toshinobu, Hirano, Satoshi, Sabe, Hisataka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17459
container_issue 35
container_start_page 17450
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Hashimoto, Shigeru
Furukawa, Shotaro
Hashimoto, Ari
Tsutaho, Akio
Fukao, Akira
Sakamura, Yurika
Parajuli, Gyanu
Onodera, Yasuhito
Otsuka, Yutaro
Handa, Haruka
Oikawa, Tsukasa
Hata, Soichiro
Nishikawa, Yoshihiro
Mizukami, Yusuke
Kodama, Yuzo
Murakami, Masaaki
Fujiwara, Toshinobu
Hirano, Satoshi
Sabe, Hisataka
description Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadherin, thus promoting tumor invasion and metastasis when ARF6 is activated. Here we show that the ARF6–AMAP1 pathway is a major target by which KRAS and TP53 cooperatively promote malignancy. KRAS was identified to promote eIF4A-dependent ARF6 mRNA translation, which contains a quadruplex structure at its 5′-untranslated region, by inducing TEAD3 and ETV4 to suppress PDCD4; and also eIF4E-dependent AMAP1 mRNA translation, which contains a 5′-terminal oligopyrimidine-like sequence, via up-regulating mTORC1. TP53 facilitated ARF6 activation by platelet-derived growth factor (PDGF), via its known function to promote the expression of PDGF receptor β (PDGFRβ) and enzymes of the mevalonate pathway (MVP). The ARF6–AMAP1 pathway was moreover essential for PDGF-driven recycling of PD-L1, in which KRAS, TP53, eIF4A/4E-dependent translation, mTOR, and MVP were all integral. We moreover demonstrated that the mouse PDAC model KPC cells, bearing KRAS/TP53 mutations, express ARF6 and AMAP1 at high levels and that the ARF6-based pathway is closely associated with immune evasion of KPC cells. Expression of ARF6 pathway components statistically correlated with poor patient outcomes. Thus, the cooperation among eIF4A/4E-dependent mRNA translation and MVP has emerged as a link by which pancreatic driver mutations may promote tumor cell motility, PD-L1 dynamics, and immune evasion, via empowering the ARF6-based pathway and its activation by external ligands.
doi_str_mv 10.1073/pnas.1901765116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26850773</jstor_id><sourcerecordid>26850773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-7dba515beb43cc0f7ced09ad4215c5e601b5bbda3ca7697dce9e146c3f8f86113</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EokNhzQpkiQ2LpvWN478N0qhQQAxiVMrachynZDSxg-1U6hvw2Hg6ZfhZ2fL57idfHYSeAzkFIujZ5E06BUVAcAbAH6AFEAUVbxR5iBaE1KKSTd0coScpbQghiknyGB1RoEqxhi3Qz-XlBcfGd3j5ebkGbKLDo9mEiLOJ1y4nHHr86XL59Y65WjOKxzmbPASfcA54imEM2eHB35hUHk_w-m21AtzdejMONp3czQ3jOHuH3Z7ZKSfjbXTFY7EtVxefoke92Sb37P48Rt8u3l2df6hWX95_PF-uKttIkSvRtYYBa13bUGtJL6zriDJdUwOzzHECLWvbzlBrBFeis045aLilvewlB6DH6M3eO83t6EruczRbPcVhNPFWBzPofxM_fNfX4UZzAaKWqghe3wti-DG7lPU4JOu2W-NdmJOuawGyUVTSgr76D92EOfqyXqFKXktJWaHO9pSNIaXo-sNngOhdy3rXsv7Tcpl4-fcOB_53rQV4sQc2KYd4yGsuGRGC0l-cw61c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283328835</pqid></control><display><type>article</type><title>ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hashimoto, Shigeru ; Furukawa, Shotaro ; Hashimoto, Ari ; Tsutaho, Akio ; Fukao, Akira ; Sakamura, Yurika ; Parajuli, Gyanu ; Onodera, Yasuhito ; Otsuka, Yutaro ; Handa, Haruka ; Oikawa, Tsukasa ; Hata, Soichiro ; Nishikawa, Yoshihiro ; Mizukami, Yusuke ; Kodama, Yuzo ; Murakami, Masaaki ; Fujiwara, Toshinobu ; Hirano, Satoshi ; Sabe, Hisataka</creator><creatorcontrib>Hashimoto, Shigeru ; Furukawa, Shotaro ; Hashimoto, Ari ; Tsutaho, Akio ; Fukao, Akira ; Sakamura, Yurika ; Parajuli, Gyanu ; Onodera, Yasuhito ; Otsuka, Yutaro ; Handa, Haruka ; Oikawa, Tsukasa ; Hata, Soichiro ; Nishikawa, Yoshihiro ; Mizukami, Yusuke ; Kodama, Yuzo ; Murakami, Masaaki ; Fujiwara, Toshinobu ; Hirano, Satoshi ; Sabe, Hisataka</creatorcontrib><description>Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadherin, thus promoting tumor invasion and metastasis when ARF6 is activated. Here we show that the ARF6–AMAP1 pathway is a major target by which KRAS and TP53 cooperatively promote malignancy. KRAS was identified to promote eIF4A-dependent ARF6 mRNA translation, which contains a quadruplex structure at its 5′-untranslated region, by inducing TEAD3 and ETV4 to suppress PDCD4; and also eIF4E-dependent AMAP1 mRNA translation, which contains a 5′-terminal oligopyrimidine-like sequence, via up-regulating mTORC1. TP53 facilitated ARF6 activation by platelet-derived growth factor (PDGF), via its known function to promote the expression of PDGF receptor β (PDGFRβ) and enzymes of the mevalonate pathway (MVP). The ARF6–AMAP1 pathway was moreover essential for PDGF-driven recycling of PD-L1, in which KRAS, TP53, eIF4A/4E-dependent translation, mTOR, and MVP were all integral. We moreover demonstrated that the mouse PDAC model KPC cells, bearing KRAS/TP53 mutations, express ARF6 and AMAP1 at high levels and that the ARF6-based pathway is closely associated with immune evasion of KPC cells. Expression of ARF6 pathway components statistically correlated with poor patient outcomes. Thus, the cooperation among eIF4A/4E-dependent mRNA translation and MVP has emerged as a link by which pancreatic driver mutations may promote tumor cell motility, PD-L1 dynamics, and immune evasion, via empowering the ARF6-based pathway and its activation by external ligands.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901765116</identifier><identifier>PMID: 31399545</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activation ; Adenocarcinoma ; ADP-Ribosylation Factors - metabolism ; B7-H1 Antigen - metabolism ; Binding Sites ; Biological Sciences ; Biomarkers, Tumor ; Cancer ; Cell Line, Tumor ; E-cadherin ; Gene Expression Regulation, Neoplastic ; Growth factors ; Humans ; Immune evasion ; Immune Evasion - genetics ; Immunohistochemistry ; Initiation factor eIF-4E ; Integrins ; K-Ras protein ; Malignancy ; Metastases ; Mevalonate pathway ; Mevalonic acid ; Models, Molecular ; mRNA ; Mutation ; p53 Protein ; Pancreatic cancer ; Pancreatic Neoplasms - etiology ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - mortality ; Pancreatic Neoplasms - pathology ; PD-L1 protein ; Platelet-derived growth factor ; PNAS Plus ; Prognosis ; Protein Binding ; Proto-Oncogene Proteins p21(ras) - genetics ; Receptors, Platelet-Derived Growth Factor - metabolism ; RNA, Messenger - genetics ; Signal Transduction ; TOR protein ; Tumor Suppressor Protein p53 - genetics ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (35), p.17450-17459</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Aug 27, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-7dba515beb43cc0f7ced09ad4215c5e601b5bbda3ca7697dce9e146c3f8f86113</citedby><cites>FETCH-LOGICAL-c487t-7dba515beb43cc0f7ced09ad4215c5e601b5bbda3ca7697dce9e146c3f8f86113</cites><orcidid>0000-0002-8557-7479 ; 0000-0002-1113-6937 ; 0000-0002-1068-7024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26850773$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26850773$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31399545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hashimoto, Shigeru</creatorcontrib><creatorcontrib>Furukawa, Shotaro</creatorcontrib><creatorcontrib>Hashimoto, Ari</creatorcontrib><creatorcontrib>Tsutaho, Akio</creatorcontrib><creatorcontrib>Fukao, Akira</creatorcontrib><creatorcontrib>Sakamura, Yurika</creatorcontrib><creatorcontrib>Parajuli, Gyanu</creatorcontrib><creatorcontrib>Onodera, Yasuhito</creatorcontrib><creatorcontrib>Otsuka, Yutaro</creatorcontrib><creatorcontrib>Handa, Haruka</creatorcontrib><creatorcontrib>Oikawa, Tsukasa</creatorcontrib><creatorcontrib>Hata, Soichiro</creatorcontrib><creatorcontrib>Nishikawa, Yoshihiro</creatorcontrib><creatorcontrib>Mizukami, Yusuke</creatorcontrib><creatorcontrib>Kodama, Yuzo</creatorcontrib><creatorcontrib>Murakami, Masaaki</creatorcontrib><creatorcontrib>Fujiwara, Toshinobu</creatorcontrib><creatorcontrib>Hirano, Satoshi</creatorcontrib><creatorcontrib>Sabe, Hisataka</creatorcontrib><title>ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadherin, thus promoting tumor invasion and metastasis when ARF6 is activated. Here we show that the ARF6–AMAP1 pathway is a major target by which KRAS and TP53 cooperatively promote malignancy. KRAS was identified to promote eIF4A-dependent ARF6 mRNA translation, which contains a quadruplex structure at its 5′-untranslated region, by inducing TEAD3 and ETV4 to suppress PDCD4; and also eIF4E-dependent AMAP1 mRNA translation, which contains a 5′-terminal oligopyrimidine-like sequence, via up-regulating mTORC1. TP53 facilitated ARF6 activation by platelet-derived growth factor (PDGF), via its known function to promote the expression of PDGF receptor β (PDGFRβ) and enzymes of the mevalonate pathway (MVP). The ARF6–AMAP1 pathway was moreover essential for PDGF-driven recycling of PD-L1, in which KRAS, TP53, eIF4A/4E-dependent translation, mTOR, and MVP were all integral. We moreover demonstrated that the mouse PDAC model KPC cells, bearing KRAS/TP53 mutations, express ARF6 and AMAP1 at high levels and that the ARF6-based pathway is closely associated with immune evasion of KPC cells. Expression of ARF6 pathway components statistically correlated with poor patient outcomes. Thus, the cooperation among eIF4A/4E-dependent mRNA translation and MVP has emerged as a link by which pancreatic driver mutations may promote tumor cell motility, PD-L1 dynamics, and immune evasion, via empowering the ARF6-based pathway and its activation by external ligands.</description><subject>Activation</subject><subject>Adenocarcinoma</subject><subject>ADP-Ribosylation Factors - metabolism</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Biomarkers, Tumor</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>E-cadherin</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Immune evasion</subject><subject>Immune Evasion - genetics</subject><subject>Immunohistochemistry</subject><subject>Initiation factor eIF-4E</subject><subject>Integrins</subject><subject>K-Ras protein</subject><subject>Malignancy</subject><subject>Metastases</subject><subject>Mevalonate pathway</subject><subject>Mevalonic acid</subject><subject>Models, Molecular</subject><subject>mRNA</subject><subject>Mutation</subject><subject>p53 Protein</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - etiology</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - mortality</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>PD-L1 protein</subject><subject>Platelet-derived growth factor</subject><subject>PNAS Plus</subject><subject>Prognosis</subject><subject>Protein Binding</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Receptors, Platelet-Derived Growth Factor - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>Signal Transduction</subject><subject>TOR protein</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1u1DAUhS0EokNhzQpkiQ2LpvWN478N0qhQQAxiVMrachynZDSxg-1U6hvw2Hg6ZfhZ2fL57idfHYSeAzkFIujZ5E06BUVAcAbAH6AFEAUVbxR5iBaE1KKSTd0coScpbQghiknyGB1RoEqxhi3Qz-XlBcfGd3j5ebkGbKLDo9mEiLOJ1y4nHHr86XL59Y65WjOKxzmbPASfcA54imEM2eHB35hUHk_w-m21AtzdejMONp3czQ3jOHuH3Z7ZKSfjbXTFY7EtVxefoke92Sb37P48Rt8u3l2df6hWX95_PF-uKttIkSvRtYYBa13bUGtJL6zriDJdUwOzzHECLWvbzlBrBFeis045aLilvewlB6DH6M3eO83t6EruczRbPcVhNPFWBzPofxM_fNfX4UZzAaKWqghe3wti-DG7lPU4JOu2W-NdmJOuawGyUVTSgr76D92EOfqyXqFKXktJWaHO9pSNIaXo-sNngOhdy3rXsv7Tcpl4-fcOB_53rQV4sQc2KYd4yGsuGRGC0l-cw61c</recordid><startdate>20190827</startdate><enddate>20190827</enddate><creator>Hashimoto, Shigeru</creator><creator>Furukawa, Shotaro</creator><creator>Hashimoto, Ari</creator><creator>Tsutaho, Akio</creator><creator>Fukao, Akira</creator><creator>Sakamura, Yurika</creator><creator>Parajuli, Gyanu</creator><creator>Onodera, Yasuhito</creator><creator>Otsuka, Yutaro</creator><creator>Handa, Haruka</creator><creator>Oikawa, Tsukasa</creator><creator>Hata, Soichiro</creator><creator>Nishikawa, Yoshihiro</creator><creator>Mizukami, Yusuke</creator><creator>Kodama, Yuzo</creator><creator>Murakami, Masaaki</creator><creator>Fujiwara, Toshinobu</creator><creator>Hirano, Satoshi</creator><creator>Sabe, Hisataka</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8557-7479</orcidid><orcidid>https://orcid.org/0000-0002-1113-6937</orcidid><orcidid>https://orcid.org/0000-0002-1068-7024</orcidid></search><sort><creationdate>20190827</creationdate><title>ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer</title><author>Hashimoto, Shigeru ; Furukawa, Shotaro ; Hashimoto, Ari ; Tsutaho, Akio ; Fukao, Akira ; Sakamura, Yurika ; Parajuli, Gyanu ; Onodera, Yasuhito ; Otsuka, Yutaro ; Handa, Haruka ; Oikawa, Tsukasa ; Hata, Soichiro ; Nishikawa, Yoshihiro ; Mizukami, Yusuke ; Kodama, Yuzo ; Murakami, Masaaki ; Fujiwara, Toshinobu ; Hirano, Satoshi ; Sabe, Hisataka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-7dba515beb43cc0f7ced09ad4215c5e601b5bbda3ca7697dce9e146c3f8f86113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Adenocarcinoma</topic><topic>ADP-Ribosylation Factors - metabolism</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Biomarkers, Tumor</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>E-cadherin</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Immune evasion</topic><topic>Immune Evasion - genetics</topic><topic>Immunohistochemistry</topic><topic>Initiation factor eIF-4E</topic><topic>Integrins</topic><topic>K-Ras protein</topic><topic>Malignancy</topic><topic>Metastases</topic><topic>Mevalonate pathway</topic><topic>Mevalonic acid</topic><topic>Models, Molecular</topic><topic>mRNA</topic><topic>Mutation</topic><topic>p53 Protein</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - etiology</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - mortality</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>PD-L1 protein</topic><topic>Platelet-derived growth factor</topic><topic>PNAS Plus</topic><topic>Prognosis</topic><topic>Protein Binding</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Receptors, Platelet-Derived Growth Factor - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>Signal Transduction</topic><topic>TOR protein</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashimoto, Shigeru</creatorcontrib><creatorcontrib>Furukawa, Shotaro</creatorcontrib><creatorcontrib>Hashimoto, Ari</creatorcontrib><creatorcontrib>Tsutaho, Akio</creatorcontrib><creatorcontrib>Fukao, Akira</creatorcontrib><creatorcontrib>Sakamura, Yurika</creatorcontrib><creatorcontrib>Parajuli, Gyanu</creatorcontrib><creatorcontrib>Onodera, Yasuhito</creatorcontrib><creatorcontrib>Otsuka, Yutaro</creatorcontrib><creatorcontrib>Handa, Haruka</creatorcontrib><creatorcontrib>Oikawa, Tsukasa</creatorcontrib><creatorcontrib>Hata, Soichiro</creatorcontrib><creatorcontrib>Nishikawa, Yoshihiro</creatorcontrib><creatorcontrib>Mizukami, Yusuke</creatorcontrib><creatorcontrib>Kodama, Yuzo</creatorcontrib><creatorcontrib>Murakami, Masaaki</creatorcontrib><creatorcontrib>Fujiwara, Toshinobu</creatorcontrib><creatorcontrib>Hirano, Satoshi</creatorcontrib><creatorcontrib>Sabe, Hisataka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashimoto, Shigeru</au><au>Furukawa, Shotaro</au><au>Hashimoto, Ari</au><au>Tsutaho, Akio</au><au>Fukao, Akira</au><au>Sakamura, Yurika</au><au>Parajuli, Gyanu</au><au>Onodera, Yasuhito</au><au>Otsuka, Yutaro</au><au>Handa, Haruka</au><au>Oikawa, Tsukasa</au><au>Hata, Soichiro</au><au>Nishikawa, Yoshihiro</au><au>Mizukami, Yusuke</au><au>Kodama, Yuzo</au><au>Murakami, Masaaki</au><au>Fujiwara, Toshinobu</au><au>Hirano, Satoshi</au><au>Sabe, Hisataka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-08-27</date><risdate>2019</risdate><volume>116</volume><issue>35</issue><spage>17450</spage><epage>17459</epage><pages>17450-17459</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadherin, thus promoting tumor invasion and metastasis when ARF6 is activated. Here we show that the ARF6–AMAP1 pathway is a major target by which KRAS and TP53 cooperatively promote malignancy. KRAS was identified to promote eIF4A-dependent ARF6 mRNA translation, which contains a quadruplex structure at its 5′-untranslated region, by inducing TEAD3 and ETV4 to suppress PDCD4; and also eIF4E-dependent AMAP1 mRNA translation, which contains a 5′-terminal oligopyrimidine-like sequence, via up-regulating mTORC1. TP53 facilitated ARF6 activation by platelet-derived growth factor (PDGF), via its known function to promote the expression of PDGF receptor β (PDGFRβ) and enzymes of the mevalonate pathway (MVP). The ARF6–AMAP1 pathway was moreover essential for PDGF-driven recycling of PD-L1, in which KRAS, TP53, eIF4A/4E-dependent translation, mTOR, and MVP were all integral. We moreover demonstrated that the mouse PDAC model KPC cells, bearing KRAS/TP53 mutations, express ARF6 and AMAP1 at high levels and that the ARF6-based pathway is closely associated with immune evasion of KPC cells. Expression of ARF6 pathway components statistically correlated with poor patient outcomes. Thus, the cooperation among eIF4A/4E-dependent mRNA translation and MVP has emerged as a link by which pancreatic driver mutations may promote tumor cell motility, PD-L1 dynamics, and immune evasion, via empowering the ARF6-based pathway and its activation by external ligands.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31399545</pmid><doi>10.1073/pnas.1901765116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8557-7479</orcidid><orcidid>https://orcid.org/0000-0002-1113-6937</orcidid><orcidid>https://orcid.org/0000-0002-1068-7024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (35), p.17450-17459
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717289
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Activation
Adenocarcinoma
ADP-Ribosylation Factors - metabolism
B7-H1 Antigen - metabolism
Binding Sites
Biological Sciences
Biomarkers, Tumor
Cancer
Cell Line, Tumor
E-cadherin
Gene Expression Regulation, Neoplastic
Growth factors
Humans
Immune evasion
Immune Evasion - genetics
Immunohistochemistry
Initiation factor eIF-4E
Integrins
K-Ras protein
Malignancy
Metastases
Mevalonate pathway
Mevalonic acid
Models, Molecular
mRNA
Mutation
p53 Protein
Pancreatic cancer
Pancreatic Neoplasms - etiology
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - mortality
Pancreatic Neoplasms - pathology
PD-L1 protein
Platelet-derived growth factor
PNAS Plus
Prognosis
Protein Binding
Proto-Oncogene Proteins p21(ras) - genetics
Receptors, Platelet-Derived Growth Factor - metabolism
RNA, Messenger - genetics
Signal Transduction
TOR protein
Tumor Suppressor Protein p53 - genetics
Tumors
title ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ARF6%20and%20AMAP1%20are%20major%20targets%20of%20KRAS%20and%20TP53%20mutations%20to%20promote%20invasion,%20PD-L1%20dynamics,%20and%20immune%20evasion%20of%20pancreatic%20cancer&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hashimoto,%20Shigeru&rft.date=2019-08-27&rft.volume=116&rft.issue=35&rft.spage=17450&rft.epage=17459&rft.pages=17450-17459&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901765116&rft_dat=%3Cjstor_pubme%3E26850773%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283328835&rft_id=info:pmid/31399545&rft_jstor_id=26850773&rfr_iscdi=true