ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer
Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadher...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-08, Vol.116 (35), p.17450-17459 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17459 |
---|---|
container_issue | 35 |
container_start_page | 17450 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Hashimoto, Shigeru Furukawa, Shotaro Hashimoto, Ari Tsutaho, Akio Fukao, Akira Sakamura, Yurika Parajuli, Gyanu Onodera, Yasuhito Otsuka, Yutaro Handa, Haruka Oikawa, Tsukasa Hata, Soichiro Nishikawa, Yoshihiro Mizukami, Yusuke Kodama, Yuzo Murakami, Masaaki Fujiwara, Toshinobu Hirano, Satoshi Sabe, Hisataka |
description | Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadherin, thus promoting tumor invasion and metastasis when ARF6 is activated. Here we show that the ARF6–AMAP1 pathway is a major target by which KRAS and TP53 cooperatively promote malignancy. KRAS was identified to promote eIF4A-dependent ARF6 mRNA translation, which contains a quadruplex structure at its 5′-untranslated region, by inducing TEAD3 and ETV4 to suppress PDCD4; and also eIF4E-dependent AMAP1 mRNA translation, which contains a 5′-terminal oligopyrimidine-like sequence, via up-regulating mTORC1. TP53 facilitated ARF6 activation by platelet-derived growth factor (PDGF), via its known function to promote the expression of PDGF receptor β (PDGFRβ) and enzymes of the mevalonate pathway (MVP). The ARF6–AMAP1 pathway was moreover essential for PDGF-driven recycling of PD-L1, in which KRAS, TP53, eIF4A/4E-dependent translation, mTOR, and MVP were all integral. We moreover demonstrated that the mouse PDAC model KPC cells, bearing KRAS/TP53 mutations, express ARF6 and AMAP1 at high levels and that the ARF6-based pathway is closely associated with immune evasion of KPC cells. Expression of ARF6 pathway components statistically correlated with poor patient outcomes. Thus, the cooperation among eIF4A/4E-dependent mRNA translation and MVP has emerged as a link by which pancreatic driver mutations may promote tumor cell motility, PD-L1 dynamics, and immune evasion, via empowering the ARF6-based pathway and its activation by external ligands. |
doi_str_mv | 10.1073/pnas.1901765116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26850773</jstor_id><sourcerecordid>26850773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-7dba515beb43cc0f7ced09ad4215c5e601b5bbda3ca7697dce9e146c3f8f86113</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EokNhzQpkiQ2LpvWN478N0qhQQAxiVMrachynZDSxg-1U6hvw2Hg6ZfhZ2fL57idfHYSeAzkFIujZ5E06BUVAcAbAH6AFEAUVbxR5iBaE1KKSTd0coScpbQghiknyGB1RoEqxhi3Qz-XlBcfGd3j5ebkGbKLDo9mEiLOJ1y4nHHr86XL59Y65WjOKxzmbPASfcA54imEM2eHB35hUHk_w-m21AtzdejMONp3czQ3jOHuH3Z7ZKSfjbXTFY7EtVxefoke92Sb37P48Rt8u3l2df6hWX95_PF-uKttIkSvRtYYBa13bUGtJL6zriDJdUwOzzHECLWvbzlBrBFeis045aLilvewlB6DH6M3eO83t6EruczRbPcVhNPFWBzPofxM_fNfX4UZzAaKWqghe3wti-DG7lPU4JOu2W-NdmJOuawGyUVTSgr76D92EOfqyXqFKXktJWaHO9pSNIaXo-sNngOhdy3rXsv7Tcpl4-fcOB_53rQV4sQc2KYd4yGsuGRGC0l-cw61c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283328835</pqid></control><display><type>article</type><title>ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hashimoto, Shigeru ; Furukawa, Shotaro ; Hashimoto, Ari ; Tsutaho, Akio ; Fukao, Akira ; Sakamura, Yurika ; Parajuli, Gyanu ; Onodera, Yasuhito ; Otsuka, Yutaro ; Handa, Haruka ; Oikawa, Tsukasa ; Hata, Soichiro ; Nishikawa, Yoshihiro ; Mizukami, Yusuke ; Kodama, Yuzo ; Murakami, Masaaki ; Fujiwara, Toshinobu ; Hirano, Satoshi ; Sabe, Hisataka</creator><creatorcontrib>Hashimoto, Shigeru ; Furukawa, Shotaro ; Hashimoto, Ari ; Tsutaho, Akio ; Fukao, Akira ; Sakamura, Yurika ; Parajuli, Gyanu ; Onodera, Yasuhito ; Otsuka, Yutaro ; Handa, Haruka ; Oikawa, Tsukasa ; Hata, Soichiro ; Nishikawa, Yoshihiro ; Mizukami, Yusuke ; Kodama, Yuzo ; Murakami, Masaaki ; Fujiwara, Toshinobu ; Hirano, Satoshi ; Sabe, Hisataka</creatorcontrib><description>Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadherin, thus promoting tumor invasion and metastasis when ARF6 is activated. Here we show that the ARF6–AMAP1 pathway is a major target by which KRAS and TP53 cooperatively promote malignancy. KRAS was identified to promote eIF4A-dependent ARF6 mRNA translation, which contains a quadruplex structure at its 5′-untranslated region, by inducing TEAD3 and ETV4 to suppress PDCD4; and also eIF4E-dependent AMAP1 mRNA translation, which contains a 5′-terminal oligopyrimidine-like sequence, via up-regulating mTORC1. TP53 facilitated ARF6 activation by platelet-derived growth factor (PDGF), via its known function to promote the expression of PDGF receptor β (PDGFRβ) and enzymes of the mevalonate pathway (MVP). The ARF6–AMAP1 pathway was moreover essential for PDGF-driven recycling of PD-L1, in which KRAS, TP53, eIF4A/4E-dependent translation, mTOR, and MVP were all integral. We moreover demonstrated that the mouse PDAC model KPC cells, bearing KRAS/TP53 mutations, express ARF6 and AMAP1 at high levels and that the ARF6-based pathway is closely associated with immune evasion of KPC cells. Expression of ARF6 pathway components statistically correlated with poor patient outcomes. Thus, the cooperation among eIF4A/4E-dependent mRNA translation and MVP has emerged as a link by which pancreatic driver mutations may promote tumor cell motility, PD-L1 dynamics, and immune evasion, via empowering the ARF6-based pathway and its activation by external ligands.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901765116</identifier><identifier>PMID: 31399545</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activation ; Adenocarcinoma ; ADP-Ribosylation Factors - metabolism ; B7-H1 Antigen - metabolism ; Binding Sites ; Biological Sciences ; Biomarkers, Tumor ; Cancer ; Cell Line, Tumor ; E-cadherin ; Gene Expression Regulation, Neoplastic ; Growth factors ; Humans ; Immune evasion ; Immune Evasion - genetics ; Immunohistochemistry ; Initiation factor eIF-4E ; Integrins ; K-Ras protein ; Malignancy ; Metastases ; Mevalonate pathway ; Mevalonic acid ; Models, Molecular ; mRNA ; Mutation ; p53 Protein ; Pancreatic cancer ; Pancreatic Neoplasms - etiology ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - mortality ; Pancreatic Neoplasms - pathology ; PD-L1 protein ; Platelet-derived growth factor ; PNAS Plus ; Prognosis ; Protein Binding ; Proto-Oncogene Proteins p21(ras) - genetics ; Receptors, Platelet-Derived Growth Factor - metabolism ; RNA, Messenger - genetics ; Signal Transduction ; TOR protein ; Tumor Suppressor Protein p53 - genetics ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (35), p.17450-17459</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Aug 27, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-7dba515beb43cc0f7ced09ad4215c5e601b5bbda3ca7697dce9e146c3f8f86113</citedby><cites>FETCH-LOGICAL-c487t-7dba515beb43cc0f7ced09ad4215c5e601b5bbda3ca7697dce9e146c3f8f86113</cites><orcidid>0000-0002-8557-7479 ; 0000-0002-1113-6937 ; 0000-0002-1068-7024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26850773$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26850773$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31399545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hashimoto, Shigeru</creatorcontrib><creatorcontrib>Furukawa, Shotaro</creatorcontrib><creatorcontrib>Hashimoto, Ari</creatorcontrib><creatorcontrib>Tsutaho, Akio</creatorcontrib><creatorcontrib>Fukao, Akira</creatorcontrib><creatorcontrib>Sakamura, Yurika</creatorcontrib><creatorcontrib>Parajuli, Gyanu</creatorcontrib><creatorcontrib>Onodera, Yasuhito</creatorcontrib><creatorcontrib>Otsuka, Yutaro</creatorcontrib><creatorcontrib>Handa, Haruka</creatorcontrib><creatorcontrib>Oikawa, Tsukasa</creatorcontrib><creatorcontrib>Hata, Soichiro</creatorcontrib><creatorcontrib>Nishikawa, Yoshihiro</creatorcontrib><creatorcontrib>Mizukami, Yusuke</creatorcontrib><creatorcontrib>Kodama, Yuzo</creatorcontrib><creatorcontrib>Murakami, Masaaki</creatorcontrib><creatorcontrib>Fujiwara, Toshinobu</creatorcontrib><creatorcontrib>Hirano, Satoshi</creatorcontrib><creatorcontrib>Sabe, Hisataka</creatorcontrib><title>ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadherin, thus promoting tumor invasion and metastasis when ARF6 is activated. Here we show that the ARF6–AMAP1 pathway is a major target by which KRAS and TP53 cooperatively promote malignancy. KRAS was identified to promote eIF4A-dependent ARF6 mRNA translation, which contains a quadruplex structure at its 5′-untranslated region, by inducing TEAD3 and ETV4 to suppress PDCD4; and also eIF4E-dependent AMAP1 mRNA translation, which contains a 5′-terminal oligopyrimidine-like sequence, via up-regulating mTORC1. TP53 facilitated ARF6 activation by platelet-derived growth factor (PDGF), via its known function to promote the expression of PDGF receptor β (PDGFRβ) and enzymes of the mevalonate pathway (MVP). The ARF6–AMAP1 pathway was moreover essential for PDGF-driven recycling of PD-L1, in which KRAS, TP53, eIF4A/4E-dependent translation, mTOR, and MVP were all integral. We moreover demonstrated that the mouse PDAC model KPC cells, bearing KRAS/TP53 mutations, express ARF6 and AMAP1 at high levels and that the ARF6-based pathway is closely associated with immune evasion of KPC cells. Expression of ARF6 pathway components statistically correlated with poor patient outcomes. Thus, the cooperation among eIF4A/4E-dependent mRNA translation and MVP has emerged as a link by which pancreatic driver mutations may promote tumor cell motility, PD-L1 dynamics, and immune evasion, via empowering the ARF6-based pathway and its activation by external ligands.</description><subject>Activation</subject><subject>Adenocarcinoma</subject><subject>ADP-Ribosylation Factors - metabolism</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Biomarkers, Tumor</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>E-cadherin</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Immune evasion</subject><subject>Immune Evasion - genetics</subject><subject>Immunohistochemistry</subject><subject>Initiation factor eIF-4E</subject><subject>Integrins</subject><subject>K-Ras protein</subject><subject>Malignancy</subject><subject>Metastases</subject><subject>Mevalonate pathway</subject><subject>Mevalonic acid</subject><subject>Models, Molecular</subject><subject>mRNA</subject><subject>Mutation</subject><subject>p53 Protein</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - etiology</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - mortality</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>PD-L1 protein</subject><subject>Platelet-derived growth factor</subject><subject>PNAS Plus</subject><subject>Prognosis</subject><subject>Protein Binding</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Receptors, Platelet-Derived Growth Factor - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>Signal Transduction</subject><subject>TOR protein</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1u1DAUhS0EokNhzQpkiQ2LpvWN478N0qhQQAxiVMrachynZDSxg-1U6hvw2Hg6ZfhZ2fL57idfHYSeAzkFIujZ5E06BUVAcAbAH6AFEAUVbxR5iBaE1KKSTd0coScpbQghiknyGB1RoEqxhi3Qz-XlBcfGd3j5ebkGbKLDo9mEiLOJ1y4nHHr86XL59Y65WjOKxzmbPASfcA54imEM2eHB35hUHk_w-m21AtzdejMONp3czQ3jOHuH3Z7ZKSfjbXTFY7EtVxefoke92Sb37P48Rt8u3l2df6hWX95_PF-uKttIkSvRtYYBa13bUGtJL6zriDJdUwOzzHECLWvbzlBrBFeis045aLilvewlB6DH6M3eO83t6EruczRbPcVhNPFWBzPofxM_fNfX4UZzAaKWqghe3wti-DG7lPU4JOu2W-NdmJOuawGyUVTSgr76D92EOfqyXqFKXktJWaHO9pSNIaXo-sNngOhdy3rXsv7Tcpl4-fcOB_53rQV4sQc2KYd4yGsuGRGC0l-cw61c</recordid><startdate>20190827</startdate><enddate>20190827</enddate><creator>Hashimoto, Shigeru</creator><creator>Furukawa, Shotaro</creator><creator>Hashimoto, Ari</creator><creator>Tsutaho, Akio</creator><creator>Fukao, Akira</creator><creator>Sakamura, Yurika</creator><creator>Parajuli, Gyanu</creator><creator>Onodera, Yasuhito</creator><creator>Otsuka, Yutaro</creator><creator>Handa, Haruka</creator><creator>Oikawa, Tsukasa</creator><creator>Hata, Soichiro</creator><creator>Nishikawa, Yoshihiro</creator><creator>Mizukami, Yusuke</creator><creator>Kodama, Yuzo</creator><creator>Murakami, Masaaki</creator><creator>Fujiwara, Toshinobu</creator><creator>Hirano, Satoshi</creator><creator>Sabe, Hisataka</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8557-7479</orcidid><orcidid>https://orcid.org/0000-0002-1113-6937</orcidid><orcidid>https://orcid.org/0000-0002-1068-7024</orcidid></search><sort><creationdate>20190827</creationdate><title>ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer</title><author>Hashimoto, Shigeru ; Furukawa, Shotaro ; Hashimoto, Ari ; Tsutaho, Akio ; Fukao, Akira ; Sakamura, Yurika ; Parajuli, Gyanu ; Onodera, Yasuhito ; Otsuka, Yutaro ; Handa, Haruka ; Oikawa, Tsukasa ; Hata, Soichiro ; Nishikawa, Yoshihiro ; Mizukami, Yusuke ; Kodama, Yuzo ; Murakami, Masaaki ; Fujiwara, Toshinobu ; Hirano, Satoshi ; Sabe, Hisataka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-7dba515beb43cc0f7ced09ad4215c5e601b5bbda3ca7697dce9e146c3f8f86113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Adenocarcinoma</topic><topic>ADP-Ribosylation Factors - metabolism</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Biomarkers, Tumor</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>E-cadherin</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Immune evasion</topic><topic>Immune Evasion - genetics</topic><topic>Immunohistochemistry</topic><topic>Initiation factor eIF-4E</topic><topic>Integrins</topic><topic>K-Ras protein</topic><topic>Malignancy</topic><topic>Metastases</topic><topic>Mevalonate pathway</topic><topic>Mevalonic acid</topic><topic>Models, Molecular</topic><topic>mRNA</topic><topic>Mutation</topic><topic>p53 Protein</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - etiology</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - mortality</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>PD-L1 protein</topic><topic>Platelet-derived growth factor</topic><topic>PNAS Plus</topic><topic>Prognosis</topic><topic>Protein Binding</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Receptors, Platelet-Derived Growth Factor - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>Signal Transduction</topic><topic>TOR protein</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashimoto, Shigeru</creatorcontrib><creatorcontrib>Furukawa, Shotaro</creatorcontrib><creatorcontrib>Hashimoto, Ari</creatorcontrib><creatorcontrib>Tsutaho, Akio</creatorcontrib><creatorcontrib>Fukao, Akira</creatorcontrib><creatorcontrib>Sakamura, Yurika</creatorcontrib><creatorcontrib>Parajuli, Gyanu</creatorcontrib><creatorcontrib>Onodera, Yasuhito</creatorcontrib><creatorcontrib>Otsuka, Yutaro</creatorcontrib><creatorcontrib>Handa, Haruka</creatorcontrib><creatorcontrib>Oikawa, Tsukasa</creatorcontrib><creatorcontrib>Hata, Soichiro</creatorcontrib><creatorcontrib>Nishikawa, Yoshihiro</creatorcontrib><creatorcontrib>Mizukami, Yusuke</creatorcontrib><creatorcontrib>Kodama, Yuzo</creatorcontrib><creatorcontrib>Murakami, Masaaki</creatorcontrib><creatorcontrib>Fujiwara, Toshinobu</creatorcontrib><creatorcontrib>Hirano, Satoshi</creatorcontrib><creatorcontrib>Sabe, Hisataka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashimoto, Shigeru</au><au>Furukawa, Shotaro</au><au>Hashimoto, Ari</au><au>Tsutaho, Akio</au><au>Fukao, Akira</au><au>Sakamura, Yurika</au><au>Parajuli, Gyanu</au><au>Onodera, Yasuhito</au><au>Otsuka, Yutaro</au><au>Handa, Haruka</au><au>Oikawa, Tsukasa</au><au>Hata, Soichiro</au><au>Nishikawa, Yoshihiro</au><au>Mizukami, Yusuke</au><au>Kodama, Yuzo</au><au>Murakami, Masaaki</au><au>Fujiwara, Toshinobu</au><au>Hirano, Satoshi</au><au>Sabe, Hisataka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-08-27</date><risdate>2019</risdate><volume>116</volume><issue>35</issue><spage>17450</spage><epage>17459</epage><pages>17450-17459</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadherin, thus promoting tumor invasion and metastasis when ARF6 is activated. Here we show that the ARF6–AMAP1 pathway is a major target by which KRAS and TP53 cooperatively promote malignancy. KRAS was identified to promote eIF4A-dependent ARF6 mRNA translation, which contains a quadruplex structure at its 5′-untranslated region, by inducing TEAD3 and ETV4 to suppress PDCD4; and also eIF4E-dependent AMAP1 mRNA translation, which contains a 5′-terminal oligopyrimidine-like sequence, via up-regulating mTORC1. TP53 facilitated ARF6 activation by platelet-derived growth factor (PDGF), via its known function to promote the expression of PDGF receptor β (PDGFRβ) and enzymes of the mevalonate pathway (MVP). The ARF6–AMAP1 pathway was moreover essential for PDGF-driven recycling of PD-L1, in which KRAS, TP53, eIF4A/4E-dependent translation, mTOR, and MVP were all integral. We moreover demonstrated that the mouse PDAC model KPC cells, bearing KRAS/TP53 mutations, express ARF6 and AMAP1 at high levels and that the ARF6-based pathway is closely associated with immune evasion of KPC cells. Expression of ARF6 pathway components statistically correlated with poor patient outcomes. Thus, the cooperation among eIF4A/4E-dependent mRNA translation and MVP has emerged as a link by which pancreatic driver mutations may promote tumor cell motility, PD-L1 dynamics, and immune evasion, via empowering the ARF6-based pathway and its activation by external ligands.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31399545</pmid><doi>10.1073/pnas.1901765116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8557-7479</orcidid><orcidid>https://orcid.org/0000-0002-1113-6937</orcidid><orcidid>https://orcid.org/0000-0002-1068-7024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (35), p.17450-17459 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717289 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Activation Adenocarcinoma ADP-Ribosylation Factors - metabolism B7-H1 Antigen - metabolism Binding Sites Biological Sciences Biomarkers, Tumor Cancer Cell Line, Tumor E-cadherin Gene Expression Regulation, Neoplastic Growth factors Humans Immune evasion Immune Evasion - genetics Immunohistochemistry Initiation factor eIF-4E Integrins K-Ras protein Malignancy Metastases Mevalonate pathway Mevalonic acid Models, Molecular mRNA Mutation p53 Protein Pancreatic cancer Pancreatic Neoplasms - etiology Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - mortality Pancreatic Neoplasms - pathology PD-L1 protein Platelet-derived growth factor PNAS Plus Prognosis Protein Binding Proto-Oncogene Proteins p21(ras) - genetics Receptors, Platelet-Derived Growth Factor - metabolism RNA, Messenger - genetics Signal Transduction TOR protein Tumor Suppressor Protein p53 - genetics Tumors |
title | ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ARF6%20and%20AMAP1%20are%20major%20targets%20of%20KRAS%20and%20TP53%20mutations%20to%20promote%20invasion,%20PD-L1%20dynamics,%20and%20immune%20evasion%20of%20pancreatic%20cancer&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hashimoto,%20Shigeru&rft.date=2019-08-27&rft.volume=116&rft.issue=35&rft.spage=17450&rft.epage=17459&rft.pages=17450-17459&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901765116&rft_dat=%3Cjstor_pubme%3E26850773%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283328835&rft_id=info:pmid/31399545&rft_jstor_id=26850773&rfr_iscdi=true |