In Situ Small-Angle X‑ray Scattering Studies During Reversible Addition–Fragmentation Chain Transfer Aqueous Emulsion Polymerization

Polymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media. In situ small-angle X-ray scattering (SAXS) studies of reversible addition–fragm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-08, Vol.141 (34), p.13664-13675
Hauptverfasser: Brotherton, Emma E, Hatton, Fiona L, Cockram, Amy A, Derry, Matthew J, Czajka, Adam, Cornel, Erik J, Topham, Paul D, Mykhaylyk, Oleksandr O, Armes, Steven P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13675
container_issue 34
container_start_page 13664
container_title Journal of the American Chemical Society
container_volume 141
creator Brotherton, Emma E
Hatton, Fiona L
Cockram, Amy A
Derry, Matthew J
Czajka, Adam
Cornel, Erik J
Topham, Paul D
Mykhaylyk, Oleksandr O
Armes, Steven P
description Polymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media. In situ small-angle X-ray scattering (SAXS) studies of reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization have previously provided detailed structural information during self-assembly (see M. J. Derry et al., Chem. Sci. 2016, 7, 5078–5090 ). However, conducting the analogous in situ SAXS studies during RAFT aqueous emulsion polymerizations poses a formidable technical challenge because the inherently heterogeneous nature of such PISA formulations requires efficient stirring to generate sufficiently small monomer droplets. In the present study, the RAFT aqueous emulsion polymerization of 2-methoxyethyl methacrylate (MOEMA) has been explored for the first time. Chain extension of a relatively short non-ionic poly­(glycerol monomethacrylate) (PGMA) precursor block leads to the formation of sterically-stabilized PGMA-PMOEMA spheres, worms or vesicles, depending on the precise reaction conditions. Construction of a suitable phase diagram enables each of these three morphologies to be reproducibly targeted at copolymer concentrations ranging from 10 to 30% w/w solids. High MOEMA conversions are achieved within 2 h at 70 °C, which makes this new PISA formulation well-suited for in situ SAXS studies using a new reaction cell. This bespoke cell enables efficient stirring and hence allows in situ monitoring during RAFT emulsion polymerization for the first time. For example, the onset of micellization and subsequent evolution in particle size can be studied when preparing PGMA29-PMOEMA30 spheres at 10% w/w solids. When targeting PGMA29-PMOEMA70 vesicles under the same conditions, both the micellar nucleation event and the subsequent evolution in the diblock copolymer morphology from spheres to worms to vesicles are observed. These new insights significantly enhance our understanding of the PISA mechanism during RAFT aqueous emulsion polymerization.
doi_str_mv 10.1021/jacs.9b06788
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6716212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267403681</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520t-13fe0aa9a28c3626d3743a252ce4fead30a48effe5a2be26a051050ac84ff6623</originalsourceid><addsrcrecordid>eNptkU1P3DAQhq2qVdnS3jhXPvbQUH8kTrhUWm35kpCKWCr1Zs0m48Urx6F2grQ9ceSK-If8EhzYQiv1ZI3m8TvzzkvIDme7nAn-ZQV13N1bMFVW1Ssy4YVgWcGFek0mjDGRlZWSW-RdjKtU5qLib8mW5FLlUvEJuTn2dG77gc5bcC6b-qVD-vP--jbAms5r6HsM1i_pvB8ai5F-Gx7LM7zCEO0iwdOmsb3t_P313UGAZYu-h7Gmswuwnp4H8NFgoNNfA3ZDpPvt4OLYP-3cuk3qvx_x9-SNARfxw-bdJj8O9s9nR9nJ98Pj2fQkg2Ssz7g0yAD2QFS1VEI1sswliELUmBuERjLIKzQGCxALFApYwVnBoK5yY5QScpt8fdK9HBYtNnVaN4DTl8G2ENa6A6v_7Xh7oZfdlVYlV4KPAp82AqFLlmKvWxtrdA786E8LocqcSVXxhH5-QuvQxRjQPI_hTI_h6TE8vQkv4R__Xu0Z_pPWy-jx16obgk-X-r_WAy8KqPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267403681</pqid></control><display><type>article</type><title>In Situ Small-Angle X‑ray Scattering Studies During Reversible Addition–Fragmentation Chain Transfer Aqueous Emulsion Polymerization</title><source>ACS Publications</source><creator>Brotherton, Emma E ; Hatton, Fiona L ; Cockram, Amy A ; Derry, Matthew J ; Czajka, Adam ; Cornel, Erik J ; Topham, Paul D ; Mykhaylyk, Oleksandr O ; Armes, Steven P</creator><creatorcontrib>Brotherton, Emma E ; Hatton, Fiona L ; Cockram, Amy A ; Derry, Matthew J ; Czajka, Adam ; Cornel, Erik J ; Topham, Paul D ; Mykhaylyk, Oleksandr O ; Armes, Steven P</creatorcontrib><description>Polymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media. In situ small-angle X-ray scattering (SAXS) studies of reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization have previously provided detailed structural information during self-assembly (see M. J. Derry et al., Chem. Sci. 2016, 7, 5078–5090 ). However, conducting the analogous in situ SAXS studies during RAFT aqueous emulsion polymerizations poses a formidable technical challenge because the inherently heterogeneous nature of such PISA formulations requires efficient stirring to generate sufficiently small monomer droplets. In the present study, the RAFT aqueous emulsion polymerization of 2-methoxyethyl methacrylate (MOEMA) has been explored for the first time. Chain extension of a relatively short non-ionic poly­(glycerol monomethacrylate) (PGMA) precursor block leads to the formation of sterically-stabilized PGMA-PMOEMA spheres, worms or vesicles, depending on the precise reaction conditions. Construction of a suitable phase diagram enables each of these three morphologies to be reproducibly targeted at copolymer concentrations ranging from 10 to 30% w/w solids. High MOEMA conversions are achieved within 2 h at 70 °C, which makes this new PISA formulation well-suited for in situ SAXS studies using a new reaction cell. This bespoke cell enables efficient stirring and hence allows in situ monitoring during RAFT emulsion polymerization for the first time. For example, the onset of micellization and subsequent evolution in particle size can be studied when preparing PGMA29-PMOEMA30 spheres at 10% w/w solids. When targeting PGMA29-PMOEMA70 vesicles under the same conditions, both the micellar nucleation event and the subsequent evolution in the diblock copolymer morphology from spheres to worms to vesicles are observed. These new insights significantly enhance our understanding of the PISA mechanism during RAFT aqueous emulsion polymerization.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b06788</identifier><identifier>PMID: 31364361</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2019-08, Vol.141 (34), p.13664-13675</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a520t-13fe0aa9a28c3626d3743a252ce4fead30a48effe5a2be26a051050ac84ff6623</citedby><cites>FETCH-LOGICAL-a520t-13fe0aa9a28c3626d3743a252ce4fead30a48effe5a2be26a051050ac84ff6623</cites><orcidid>0000-0003-4110-8328 ; 0000-0002-8289-6351 ; 0000-0001-5010-6725 ; 0000-0002-0105-7530 ; 0000-0003-4152-6976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.9b06788$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.9b06788$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31364361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brotherton, Emma E</creatorcontrib><creatorcontrib>Hatton, Fiona L</creatorcontrib><creatorcontrib>Cockram, Amy A</creatorcontrib><creatorcontrib>Derry, Matthew J</creatorcontrib><creatorcontrib>Czajka, Adam</creatorcontrib><creatorcontrib>Cornel, Erik J</creatorcontrib><creatorcontrib>Topham, Paul D</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O</creatorcontrib><creatorcontrib>Armes, Steven P</creatorcontrib><title>In Situ Small-Angle X‑ray Scattering Studies During Reversible Addition–Fragmentation Chain Transfer Aqueous Emulsion Polymerization</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Polymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media. In situ small-angle X-ray scattering (SAXS) studies of reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization have previously provided detailed structural information during self-assembly (see M. J. Derry et al., Chem. Sci. 2016, 7, 5078–5090 ). However, conducting the analogous in situ SAXS studies during RAFT aqueous emulsion polymerizations poses a formidable technical challenge because the inherently heterogeneous nature of such PISA formulations requires efficient stirring to generate sufficiently small monomer droplets. In the present study, the RAFT aqueous emulsion polymerization of 2-methoxyethyl methacrylate (MOEMA) has been explored for the first time. Chain extension of a relatively short non-ionic poly­(glycerol monomethacrylate) (PGMA) precursor block leads to the formation of sterically-stabilized PGMA-PMOEMA spheres, worms or vesicles, depending on the precise reaction conditions. Construction of a suitable phase diagram enables each of these three morphologies to be reproducibly targeted at copolymer concentrations ranging from 10 to 30% w/w solids. High MOEMA conversions are achieved within 2 h at 70 °C, which makes this new PISA formulation well-suited for in situ SAXS studies using a new reaction cell. This bespoke cell enables efficient stirring and hence allows in situ monitoring during RAFT emulsion polymerization for the first time. For example, the onset of micellization and subsequent evolution in particle size can be studied when preparing PGMA29-PMOEMA30 spheres at 10% w/w solids. When targeting PGMA29-PMOEMA70 vesicles under the same conditions, both the micellar nucleation event and the subsequent evolution in the diblock copolymer morphology from spheres to worms to vesicles are observed. These new insights significantly enhance our understanding of the PISA mechanism during RAFT aqueous emulsion polymerization.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkU1P3DAQhq2qVdnS3jhXPvbQUH8kTrhUWm35kpCKWCr1Zs0m48Urx6F2grQ9ceSK-If8EhzYQiv1ZI3m8TvzzkvIDme7nAn-ZQV13N1bMFVW1Ssy4YVgWcGFek0mjDGRlZWSW-RdjKtU5qLib8mW5FLlUvEJuTn2dG77gc5bcC6b-qVD-vP--jbAms5r6HsM1i_pvB8ai5F-Gx7LM7zCEO0iwdOmsb3t_P313UGAZYu-h7Gmswuwnp4H8NFgoNNfA3ZDpPvt4OLYP-3cuk3qvx_x9-SNARfxw-bdJj8O9s9nR9nJ98Pj2fQkg2Ssz7g0yAD2QFS1VEI1sswliELUmBuERjLIKzQGCxALFApYwVnBoK5yY5QScpt8fdK9HBYtNnVaN4DTl8G2ENa6A6v_7Xh7oZfdlVYlV4KPAp82AqFLlmKvWxtrdA786E8LocqcSVXxhH5-QuvQxRjQPI_hTI_h6TE8vQkv4R__Xu0Z_pPWy-jx16obgk-X-r_WAy8KqPU</recordid><startdate>20190828</startdate><enddate>20190828</enddate><creator>Brotherton, Emma E</creator><creator>Hatton, Fiona L</creator><creator>Cockram, Amy A</creator><creator>Derry, Matthew J</creator><creator>Czajka, Adam</creator><creator>Cornel, Erik J</creator><creator>Topham, Paul D</creator><creator>Mykhaylyk, Oleksandr O</creator><creator>Armes, Steven P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0001-5010-6725</orcidid><orcidid>https://orcid.org/0000-0002-0105-7530</orcidid><orcidid>https://orcid.org/0000-0003-4152-6976</orcidid></search><sort><creationdate>20190828</creationdate><title>In Situ Small-Angle X‑ray Scattering Studies During Reversible Addition–Fragmentation Chain Transfer Aqueous Emulsion Polymerization</title><author>Brotherton, Emma E ; Hatton, Fiona L ; Cockram, Amy A ; Derry, Matthew J ; Czajka, Adam ; Cornel, Erik J ; Topham, Paul D ; Mykhaylyk, Oleksandr O ; Armes, Steven P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520t-13fe0aa9a28c3626d3743a252ce4fead30a48effe5a2be26a051050ac84ff6623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brotherton, Emma E</creatorcontrib><creatorcontrib>Hatton, Fiona L</creatorcontrib><creatorcontrib>Cockram, Amy A</creatorcontrib><creatorcontrib>Derry, Matthew J</creatorcontrib><creatorcontrib>Czajka, Adam</creatorcontrib><creatorcontrib>Cornel, Erik J</creatorcontrib><creatorcontrib>Topham, Paul D</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O</creatorcontrib><creatorcontrib>Armes, Steven P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brotherton, Emma E</au><au>Hatton, Fiona L</au><au>Cockram, Amy A</au><au>Derry, Matthew J</au><au>Czajka, Adam</au><au>Cornel, Erik J</au><au>Topham, Paul D</au><au>Mykhaylyk, Oleksandr O</au><au>Armes, Steven P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Small-Angle X‑ray Scattering Studies During Reversible Addition–Fragmentation Chain Transfer Aqueous Emulsion Polymerization</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-08-28</date><risdate>2019</risdate><volume>141</volume><issue>34</issue><spage>13664</spage><epage>13675</epage><pages>13664-13675</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Polymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media. In situ small-angle X-ray scattering (SAXS) studies of reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization have previously provided detailed structural information during self-assembly (see M. J. Derry et al., Chem. Sci. 2016, 7, 5078–5090 ). However, conducting the analogous in situ SAXS studies during RAFT aqueous emulsion polymerizations poses a formidable technical challenge because the inherently heterogeneous nature of such PISA formulations requires efficient stirring to generate sufficiently small monomer droplets. In the present study, the RAFT aqueous emulsion polymerization of 2-methoxyethyl methacrylate (MOEMA) has been explored for the first time. Chain extension of a relatively short non-ionic poly­(glycerol monomethacrylate) (PGMA) precursor block leads to the formation of sterically-stabilized PGMA-PMOEMA spheres, worms or vesicles, depending on the precise reaction conditions. Construction of a suitable phase diagram enables each of these three morphologies to be reproducibly targeted at copolymer concentrations ranging from 10 to 30% w/w solids. High MOEMA conversions are achieved within 2 h at 70 °C, which makes this new PISA formulation well-suited for in situ SAXS studies using a new reaction cell. This bespoke cell enables efficient stirring and hence allows in situ monitoring during RAFT emulsion polymerization for the first time. For example, the onset of micellization and subsequent evolution in particle size can be studied when preparing PGMA29-PMOEMA30 spheres at 10% w/w solids. When targeting PGMA29-PMOEMA70 vesicles under the same conditions, both the micellar nucleation event and the subsequent evolution in the diblock copolymer morphology from spheres to worms to vesicles are observed. These new insights significantly enhance our understanding of the PISA mechanism during RAFT aqueous emulsion polymerization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31364361</pmid><doi>10.1021/jacs.9b06788</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0001-5010-6725</orcidid><orcidid>https://orcid.org/0000-0002-0105-7530</orcidid><orcidid>https://orcid.org/0000-0003-4152-6976</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-08, Vol.141 (34), p.13664-13675
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6716212
source ACS Publications
title In Situ Small-Angle X‑ray Scattering Studies During Reversible Addition–Fragmentation Chain Transfer Aqueous Emulsion Polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Small-Angle%20X%E2%80%91ray%20Scattering%20Studies%20During%20Reversible%20Addition%E2%80%93Fragmentation%20Chain%20Transfer%20Aqueous%20Emulsion%20Polymerization&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Brotherton,%20Emma%20E&rft.date=2019-08-28&rft.volume=141&rft.issue=34&rft.spage=13664&rft.epage=13675&rft.pages=13664-13675&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b06788&rft_dat=%3Cproquest_pubme%3E2267403681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267403681&rft_id=info:pmid/31364361&rfr_iscdi=true