Fabrication of hierarchical core/shell MgCo2O4@MnO2 nanowall arrays on Ni-foam as high–rate electrodes for asymmetric supercapacitors
Design and fabrication of a hierarchical core/shell MgCo 2 O 4 @MnO 2 nanowall arrays on Ni-foam by a facile two-step hydrothermal method. The electrochemical measurements prove these composites with MnO 2 definitely offer better supercapacitive performance of the MgCo 2 O 4 electrode material. The...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-08, Vol.9 (1), p.1-11, Article 12557 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Scientific reports |
container_volume | 9 |
creator | Xu, Jiasheng Wang, Lin |
description | Design and fabrication of a hierarchical core/shell MgCo
2
O
4
@MnO
2
nanowall arrays on Ni-foam by a facile two-step hydrothermal method. The electrochemical measurements prove these composites with MnO
2
definitely offer better supercapacitive performance of the MgCo
2
O
4
electrode material. The nanowall structure provides more active sites and charge transfer during the Faradic reaction. The MgCo
2
O
4
@MnO
2
nanowall shows an excellent electrochemical performance (852.5 F g
−1
at 1 A g
−1
). The asymmetric supercapacitor is composed of the MgCo
2
O
4
@MnO
2
nanowall and the activated carbon (AC). The energy densities of the asymmetric supercapacitor device can keep up 67.2 Wh·kg
−1
at 5760.0 W·kg
−1
. The MgCo
2
O
4
@MnO
2
nanowall shows excellent supercapacitive performance and has a great potential for more research and application in the asymmetric supercapacitor devices field. |
doi_str_mv | 10.1038/s41598-019-48931-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6715631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282433253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-f79e15ea93fa88dfb4641583b990652d784ae8010eb20586d6e8ce418526975e3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEolXpC7CyxIZNqP9jbxBoRAGpZTawtm6cm0mqxB7sBDQ7djwAb8iT4DIVfwu8sXXvd47te6rqMaPPGBXmIkumrKkps7U0VrBa36tOOZWq5oLz-3-cT6rznG9oWYpbyezD6kQwqRtB-Wn19RLaNHpYxhhI7MkwYoLkh1KaiI8JL_KA00Sud5vIt_LFddhyEiDEz1CqkBIcMinSd2PdR5gJ5GKxG75_-ZZgQYIT-iXFDjPpYyrdwzzjUi4ked1j8rAHPy4x5UfVgx6mjOd3-1n14fLV-82b-mr7-u3m5VXtldJL3TcWmUKwogdjur6VuszBiNZaqhXvGiMBDWUUW06V0Z1G41Eyo7i2jUJxVj0_-u7XdsbOY1gSTG6fxhnSwUUY3d-dMA5uFz853TClBSsGT-8MUvy4Yl7cPGZfRgQB45od50Ywxi2zBX3yD3oT1xTK924pLoXgShSKHymfYs4J-1-PYdTdRu2OUbsStfsZtdNFJI6iXOCww_Tb-j-qH7FArNk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282433253</pqid></control><display><type>article</type><title>Fabrication of hierarchical core/shell MgCo2O4@MnO2 nanowall arrays on Ni-foam as high–rate electrodes for asymmetric supercapacitors</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Jiasheng ; Wang, Lin</creator><creatorcontrib>Xu, Jiasheng ; Wang, Lin</creatorcontrib><description>Design and fabrication of a hierarchical core/shell MgCo
2
O
4
@MnO
2
nanowall arrays on Ni-foam by a facile two-step hydrothermal method. The electrochemical measurements prove these composites with MnO
2
definitely offer better supercapacitive performance of the MgCo
2
O
4
electrode material. The nanowall structure provides more active sites and charge transfer during the Faradic reaction. The MgCo
2
O
4
@MnO
2
nanowall shows an excellent electrochemical performance (852.5 F g
−1
at 1 A g
−1
). The asymmetric supercapacitor is composed of the MgCo
2
O
4
@MnO
2
nanowall and the activated carbon (AC). The energy densities of the asymmetric supercapacitor device can keep up 67.2 Wh·kg
−1
at 5760.0 W·kg
−1
. The MgCo
2
O
4
@MnO
2
nanowall shows excellent supercapacitive performance and has a great potential for more research and application in the asymmetric supercapacitor devices field.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-48931-6</identifier><identifier>PMID: 31467302</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/354 ; 639/4077/4079/4105 ; Activated carbon ; Audio equipment ; Chemical engineering ; Electrochemistry ; Electrodes ; Electrolytes ; Energy storage ; Fabrication ; Humanities and Social Sciences ; Morphology ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-08, Vol.9 (1), p.1-11, Article 12557</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-f79e15ea93fa88dfb4641583b990652d784ae8010eb20586d6e8ce418526975e3</citedby><cites>FETCH-LOGICAL-c556t-f79e15ea93fa88dfb4641583b990652d784ae8010eb20586d6e8ce418526975e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715631/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715631/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids></links><search><creatorcontrib>Xu, Jiasheng</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><title>Fabrication of hierarchical core/shell MgCo2O4@MnO2 nanowall arrays on Ni-foam as high–rate electrodes for asymmetric supercapacitors</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Design and fabrication of a hierarchical core/shell MgCo
2
O
4
@MnO
2
nanowall arrays on Ni-foam by a facile two-step hydrothermal method. The electrochemical measurements prove these composites with MnO
2
definitely offer better supercapacitive performance of the MgCo
2
O
4
electrode material. The nanowall structure provides more active sites and charge transfer during the Faradic reaction. The MgCo
2
O
4
@MnO
2
nanowall shows an excellent electrochemical performance (852.5 F g
−1
at 1 A g
−1
). The asymmetric supercapacitor is composed of the MgCo
2
O
4
@MnO
2
nanowall and the activated carbon (AC). The energy densities of the asymmetric supercapacitor device can keep up 67.2 Wh·kg
−1
at 5760.0 W·kg
−1
. The MgCo
2
O
4
@MnO
2
nanowall shows excellent supercapacitive performance and has a great potential for more research and application in the asymmetric supercapacitor devices field.</description><subject>639/301/357/354</subject><subject>639/4077/4079/4105</subject><subject>Activated carbon</subject><subject>Audio equipment</subject><subject>Chemical engineering</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhSMEolXpC7CyxIZNqP9jbxBoRAGpZTawtm6cm0mqxB7sBDQ7djwAb8iT4DIVfwu8sXXvd47te6rqMaPPGBXmIkumrKkps7U0VrBa36tOOZWq5oLz-3-cT6rznG9oWYpbyezD6kQwqRtB-Wn19RLaNHpYxhhI7MkwYoLkh1KaiI8JL_KA00Sud5vIt_LFddhyEiDEz1CqkBIcMinSd2PdR5gJ5GKxG75_-ZZgQYIT-iXFDjPpYyrdwzzjUi4ked1j8rAHPy4x5UfVgx6mjOd3-1n14fLV-82b-mr7-u3m5VXtldJL3TcWmUKwogdjur6VuszBiNZaqhXvGiMBDWUUW06V0Z1G41Eyo7i2jUJxVj0_-u7XdsbOY1gSTG6fxhnSwUUY3d-dMA5uFz853TClBSsGT-8MUvy4Yl7cPGZfRgQB45od50Ywxi2zBX3yD3oT1xTK924pLoXgShSKHymfYs4J-1-PYdTdRu2OUbsStfsZtdNFJI6iXOCww_Tb-j-qH7FArNk</recordid><startdate>20190829</startdate><enddate>20190829</enddate><creator>Xu, Jiasheng</creator><creator>Wang, Lin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190829</creationdate><title>Fabrication of hierarchical core/shell MgCo2O4@MnO2 nanowall arrays on Ni-foam as high–rate electrodes for asymmetric supercapacitors</title><author>Xu, Jiasheng ; Wang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-f79e15ea93fa88dfb4641583b990652d784ae8010eb20586d6e8ce418526975e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/357/354</topic><topic>639/4077/4079/4105</topic><topic>Activated carbon</topic><topic>Audio equipment</topic><topic>Chemical engineering</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiasheng</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiasheng</au><au>Wang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of hierarchical core/shell MgCo2O4@MnO2 nanowall arrays on Ni-foam as high–rate electrodes for asymmetric supercapacitors</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2019-08-29</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>12557</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Design and fabrication of a hierarchical core/shell MgCo
2
O
4
@MnO
2
nanowall arrays on Ni-foam by a facile two-step hydrothermal method. The electrochemical measurements prove these composites with MnO
2
definitely offer better supercapacitive performance of the MgCo
2
O
4
electrode material. The nanowall structure provides more active sites and charge transfer during the Faradic reaction. The MgCo
2
O
4
@MnO
2
nanowall shows an excellent electrochemical performance (852.5 F g
−1
at 1 A g
−1
). The asymmetric supercapacitor is composed of the MgCo
2
O
4
@MnO
2
nanowall and the activated carbon (AC). The energy densities of the asymmetric supercapacitor device can keep up 67.2 Wh·kg
−1
at 5760.0 W·kg
−1
. The MgCo
2
O
4
@MnO
2
nanowall shows excellent supercapacitive performance and has a great potential for more research and application in the asymmetric supercapacitor devices field.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31467302</pmid><doi>10.1038/s41598-019-48931-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-08, Vol.9 (1), p.1-11, Article 12557 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6715631 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 639/301/357/354 639/4077/4079/4105 Activated carbon Audio equipment Chemical engineering Electrochemistry Electrodes Electrolytes Energy storage Fabrication Humanities and Social Sciences Morphology multidisciplinary Science Science (multidisciplinary) |
title | Fabrication of hierarchical core/shell MgCo2O4@MnO2 nanowall arrays on Ni-foam as high–rate electrodes for asymmetric supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20hierarchical%20core/shell%20MgCo2O4@MnO2%20nanowall%20arrays%20on%20Ni-foam%20as%20high%E2%80%93rate%20electrodes%20for%20asymmetric%20supercapacitors&rft.jtitle=Scientific%20reports&rft.au=Xu,%20Jiasheng&rft.date=2019-08-29&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=12557&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-48931-6&rft_dat=%3Cproquest_pubme%3E2282433253%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282433253&rft_id=info:pmid/31467302&rfr_iscdi=true |