Value of machine learning in predicting TAVI outcomes

Background Transcatheter aortic valve implantation (TAVI) has become a commonly applied procedure for high-risk aortic valve stenosis patients. However, for some patients, this procedure does not result in the expected benefits. Previous studies indicated that it is difficult to predict the benefici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Netherlands heart journal 2019-09, Vol.27 (9), p.443-450
Hauptverfasser: Lopes, R. R., van Mourik, M. S., Schaft, E. V., Ramos, L. A., Baan Jr, J., Vendrik, J., de Mol, B. A. J. M., Vis, M. M., Marquering, H. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue 9
container_start_page 443
container_title Netherlands heart journal
container_volume 27
creator Lopes, R. R.
van Mourik, M. S.
Schaft, E. V.
Ramos, L. A.
Baan Jr, J.
Vendrik, J.
de Mol, B. A. J. M.
Vis, M. M.
Marquering, H. A.
description Background Transcatheter aortic valve implantation (TAVI) has become a commonly applied procedure for high-risk aortic valve stenosis patients. However, for some patients, this procedure does not result in the expected benefits. Previous studies indicated that it is difficult to predict the beneficial effects for specific patients. We aim to study the accuracy of various traditional machine learning (ML) algorithms in the prediction of TAVI outcomes. Methods and results Clinical and laboratory data from 1,478 TAVI patients from a single centre were collected. The outcome measures were improvement of dyspnoea and mortality. Three experiments were performed using (1) screening data, (2) laboratory data, and (3) the combination of both. Five well-established ML techniques were implemented, and the models were evaluated based on the area under the curve (AUC). Random forest classifier achieved the highest AUC (0.70) for predicting mortality. Logistic regression had the highest AUC (0.56) in predicting improvement of dyspnoea. Conclusions In our single-centre TAVI population, the tree-based models were slightly more accurate than others in predicting mortality. However, ML models performed poorly in predicting improvement of dyspnoea.
doi_str_mv 10.1007/s12471-019-1285-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6712116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232101044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-d57a5fb4171afc57d55ccef5bc56de027c5989504cf4a34410f4735eb3cadf903</originalsourceid><addsrcrecordid>eNp1kctKxDAUhoMo3h_AjRTcuKnmpDlNuxFk8AaCm3G2IZMmY6VNxqQVfHszjHcwmySc7_zJ4SPkCOgZUCrOIzAuIKdQ58AqzMUG2YVKlHnJkG6mM5ZVjlVV7ZC9GJ8pRcFAbJOdAtLiKHYJzlQ3mszbrFf6qXUm64wKrnWLrHXZMpim1cPqNr2c3WV-HLTvTTwgW1Z10Rx-7Pvk8fpqOrnN7x9u7iaX97nmgg55g0KhnXMQoKxG0SBqbSzONZaNoUxorKsaKdeWq4JzoJaLAs280KqxNS32ycU6dznOe9No44agOrkMba_Cm_Sqlb8rrn2SC_8qSwEMoEwBpx8Bwb-MJg6yb6M2Xaec8WOUjBUMKFDOE3ryB332Y3BpPMkEq7EokK4CYU3p4GMMxn59BqhcSZFrKTJJkSspUqSe459TfHV8WkgAWwMxldzChO-n_099ByvWlsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729533506</pqid></control><display><type>article</type><title>Value of machine learning in predicting TAVI outcomes</title><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lopes, R. R. ; van Mourik, M. S. ; Schaft, E. V. ; Ramos, L. A. ; Baan Jr, J. ; Vendrik, J. ; de Mol, B. A. J. M. ; Vis, M. M. ; Marquering, H. A.</creator><creatorcontrib>Lopes, R. R. ; van Mourik, M. S. ; Schaft, E. V. ; Ramos, L. A. ; Baan Jr, J. ; Vendrik, J. ; de Mol, B. A. J. M. ; Vis, M. M. ; Marquering, H. A.</creatorcontrib><description>Background Transcatheter aortic valve implantation (TAVI) has become a commonly applied procedure for high-risk aortic valve stenosis patients. However, for some patients, this procedure does not result in the expected benefits. Previous studies indicated that it is difficult to predict the beneficial effects for specific patients. We aim to study the accuracy of various traditional machine learning (ML) algorithms in the prediction of TAVI outcomes. Methods and results Clinical and laboratory data from 1,478 TAVI patients from a single centre were collected. The outcome measures were improvement of dyspnoea and mortality. Three experiments were performed using (1) screening data, (2) laboratory data, and (3) the combination of both. Five well-established ML techniques were implemented, and the models were evaluated based on the area under the curve (AUC). Random forest classifier achieved the highest AUC (0.70) for predicting mortality. Logistic regression had the highest AUC (0.56) in predicting improvement of dyspnoea. Conclusions In our single-centre TAVI population, the tree-based models were slightly more accurate than others in predicting mortality. However, ML models performed poorly in predicting improvement of dyspnoea.</description><identifier>ISSN: 1568-5888</identifier><identifier>EISSN: 1876-6250</identifier><identifier>DOI: 10.1007/s12471-019-1285-7</identifier><identifier>PMID: 31111457</identifier><language>eng</language><publisher>Houten: Bohn Stafleu van Loghum</publisher><subject>Accuracy ; Algorithms ; Alzheimer's disease ; Angina pectoris ; Body mass index ; Cardiology ; Chronic obstructive pulmonary disease ; Collaboration ; Creatinine ; Dyspnea ; Electrocardiography ; Epidemiology ; Kidney diseases ; Laboratories ; Machine learning ; Medical Education ; Medical imaging ; Medical prognosis ; Medical research ; Medicine ; Medicine &amp; Public Health ; Missing data ; Mortality ; Older people ; Original ; Original Article ; Patients ; Peptides ; Performance evaluation ; Support vector machines ; Thoracic surgery ; Tomography</subject><ispartof>Netherlands heart journal, 2019-09, Vol.27 (9), p.443-450</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-d57a5fb4171afc57d55ccef5bc56de027c5989504cf4a34410f4735eb3cadf903</citedby><cites>FETCH-LOGICAL-c470t-d57a5fb4171afc57d55ccef5bc56de027c5989504cf4a34410f4735eb3cadf903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712116/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712116/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31111457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopes, R. R.</creatorcontrib><creatorcontrib>van Mourik, M. S.</creatorcontrib><creatorcontrib>Schaft, E. V.</creatorcontrib><creatorcontrib>Ramos, L. A.</creatorcontrib><creatorcontrib>Baan Jr, J.</creatorcontrib><creatorcontrib>Vendrik, J.</creatorcontrib><creatorcontrib>de Mol, B. A. J. M.</creatorcontrib><creatorcontrib>Vis, M. M.</creatorcontrib><creatorcontrib>Marquering, H. A.</creatorcontrib><title>Value of machine learning in predicting TAVI outcomes</title><title>Netherlands heart journal</title><addtitle>Neth Heart J</addtitle><addtitle>Neth Heart J</addtitle><description>Background Transcatheter aortic valve implantation (TAVI) has become a commonly applied procedure for high-risk aortic valve stenosis patients. However, for some patients, this procedure does not result in the expected benefits. Previous studies indicated that it is difficult to predict the beneficial effects for specific patients. We aim to study the accuracy of various traditional machine learning (ML) algorithms in the prediction of TAVI outcomes. Methods and results Clinical and laboratory data from 1,478 TAVI patients from a single centre were collected. The outcome measures were improvement of dyspnoea and mortality. Three experiments were performed using (1) screening data, (2) laboratory data, and (3) the combination of both. Five well-established ML techniques were implemented, and the models were evaluated based on the area under the curve (AUC). Random forest classifier achieved the highest AUC (0.70) for predicting mortality. Logistic regression had the highest AUC (0.56) in predicting improvement of dyspnoea. Conclusions In our single-centre TAVI population, the tree-based models were slightly more accurate than others in predicting mortality. However, ML models performed poorly in predicting improvement of dyspnoea.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Angina pectoris</subject><subject>Body mass index</subject><subject>Cardiology</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Collaboration</subject><subject>Creatinine</subject><subject>Dyspnea</subject><subject>Electrocardiography</subject><subject>Epidemiology</subject><subject>Kidney diseases</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Medical Education</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Missing data</subject><subject>Mortality</subject><subject>Older people</subject><subject>Original</subject><subject>Original Article</subject><subject>Patients</subject><subject>Peptides</subject><subject>Performance evaluation</subject><subject>Support vector machines</subject><subject>Thoracic surgery</subject><subject>Tomography</subject><issn>1568-5888</issn><issn>1876-6250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kctKxDAUhoMo3h_AjRTcuKnmpDlNuxFk8AaCm3G2IZMmY6VNxqQVfHszjHcwmySc7_zJ4SPkCOgZUCrOIzAuIKdQ58AqzMUG2YVKlHnJkG6mM5ZVjlVV7ZC9GJ8pRcFAbJOdAtLiKHYJzlQ3mszbrFf6qXUm64wKrnWLrHXZMpim1cPqNr2c3WV-HLTvTTwgW1Z10Rx-7Pvk8fpqOrnN7x9u7iaX97nmgg55g0KhnXMQoKxG0SBqbSzONZaNoUxorKsaKdeWq4JzoJaLAs280KqxNS32ycU6dznOe9No44agOrkMba_Cm_Sqlb8rrn2SC_8qSwEMoEwBpx8Bwb-MJg6yb6M2Xaec8WOUjBUMKFDOE3ryB332Y3BpPMkEq7EokK4CYU3p4GMMxn59BqhcSZFrKTJJkSspUqSe459TfHV8WkgAWwMxldzChO-n_099ByvWlsg</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Lopes, R. R.</creator><creator>van Mourik, M. S.</creator><creator>Schaft, E. V.</creator><creator>Ramos, L. A.</creator><creator>Baan Jr, J.</creator><creator>Vendrik, J.</creator><creator>de Mol, B. A. J. M.</creator><creator>Vis, M. M.</creator><creator>Marquering, H. A.</creator><general>Bohn Stafleu van Loghum</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190901</creationdate><title>Value of machine learning in predicting TAVI outcomes</title><author>Lopes, R. R. ; van Mourik, M. S. ; Schaft, E. V. ; Ramos, L. A. ; Baan Jr, J. ; Vendrik, J. ; de Mol, B. A. J. M. ; Vis, M. M. ; Marquering, H. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-d57a5fb4171afc57d55ccef5bc56de027c5989504cf4a34410f4735eb3cadf903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Angina pectoris</topic><topic>Body mass index</topic><topic>Cardiology</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Collaboration</topic><topic>Creatinine</topic><topic>Dyspnea</topic><topic>Electrocardiography</topic><topic>Epidemiology</topic><topic>Kidney diseases</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Medical Education</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Missing data</topic><topic>Mortality</topic><topic>Older people</topic><topic>Original</topic><topic>Original Article</topic><topic>Patients</topic><topic>Peptides</topic><topic>Performance evaluation</topic><topic>Support vector machines</topic><topic>Thoracic surgery</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Lopes, R. R.</creatorcontrib><creatorcontrib>van Mourik, M. S.</creatorcontrib><creatorcontrib>Schaft, E. V.</creatorcontrib><creatorcontrib>Ramos, L. A.</creatorcontrib><creatorcontrib>Baan Jr, J.</creatorcontrib><creatorcontrib>Vendrik, J.</creatorcontrib><creatorcontrib>de Mol, B. A. J. M.</creatorcontrib><creatorcontrib>Vis, M. M.</creatorcontrib><creatorcontrib>Marquering, H. A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Netherlands heart journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, R. R.</au><au>van Mourik, M. S.</au><au>Schaft, E. V.</au><au>Ramos, L. A.</au><au>Baan Jr, J.</au><au>Vendrik, J.</au><au>de Mol, B. A. J. M.</au><au>Vis, M. M.</au><au>Marquering, H. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value of machine learning in predicting TAVI outcomes</atitle><jtitle>Netherlands heart journal</jtitle><stitle>Neth Heart J</stitle><addtitle>Neth Heart J</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>27</volume><issue>9</issue><spage>443</spage><epage>450</epage><pages>443-450</pages><issn>1568-5888</issn><eissn>1876-6250</eissn><abstract>Background Transcatheter aortic valve implantation (TAVI) has become a commonly applied procedure for high-risk aortic valve stenosis patients. However, for some patients, this procedure does not result in the expected benefits. Previous studies indicated that it is difficult to predict the beneficial effects for specific patients. We aim to study the accuracy of various traditional machine learning (ML) algorithms in the prediction of TAVI outcomes. Methods and results Clinical and laboratory data from 1,478 TAVI patients from a single centre were collected. The outcome measures were improvement of dyspnoea and mortality. Three experiments were performed using (1) screening data, (2) laboratory data, and (3) the combination of both. Five well-established ML techniques were implemented, and the models were evaluated based on the area under the curve (AUC). Random forest classifier achieved the highest AUC (0.70) for predicting mortality. Logistic regression had the highest AUC (0.56) in predicting improvement of dyspnoea. Conclusions In our single-centre TAVI population, the tree-based models were slightly more accurate than others in predicting mortality. However, ML models performed poorly in predicting improvement of dyspnoea.</abstract><cop>Houten</cop><pub>Bohn Stafleu van Loghum</pub><pmid>31111457</pmid><doi>10.1007/s12471-019-1285-7</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1568-5888
ispartof Netherlands heart journal, 2019-09, Vol.27 (9), p.443-450
issn 1568-5888
1876-6250
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6712116
source Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Alzheimer's disease
Angina pectoris
Body mass index
Cardiology
Chronic obstructive pulmonary disease
Collaboration
Creatinine
Dyspnea
Electrocardiography
Epidemiology
Kidney diseases
Laboratories
Machine learning
Medical Education
Medical imaging
Medical prognosis
Medical research
Medicine
Medicine & Public Health
Missing data
Mortality
Older people
Original
Original Article
Patients
Peptides
Performance evaluation
Support vector machines
Thoracic surgery
Tomography
title Value of machine learning in predicting TAVI outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value%20of%20machine%20learning%20in%20predicting%20TAVI%20outcomes&rft.jtitle=Netherlands%20heart%20journal&rft.au=Lopes,%20R.%20R.&rft.date=2019-09-01&rft.volume=27&rft.issue=9&rft.spage=443&rft.epage=450&rft.pages=443-450&rft.issn=1568-5888&rft.eissn=1876-6250&rft_id=info:doi/10.1007/s12471-019-1285-7&rft_dat=%3Cproquest_pubme%3E2232101044%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729533506&rft_id=info:pmid/31111457&rfr_iscdi=true