Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles

Large volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and che...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2017-05, Vol.117, p.331-341
Hauptverfasser: Browe, Daniel P., Wood, Caroline, Sze, Matthew T., White, Kristopher A., Scott, Tracy, Olabisi, Ronke M., Freeman, Joseph W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 341
container_issue
container_start_page 331
container_title Polymer (Guilford)
container_volume 117
creator Browe, Daniel P.
Wood, Caroline
Sze, Matthew T.
White, Kristopher A.
Scott, Tracy
Olabisi, Ronke M.
Freeman, Joseph W.
description Large volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and chemical cues. Electroactive polymers, polymers that change in size or shape in response to an electric field, may be able to provide the optimal environment for muscle growth. In this study, an electroactive polymer made from poly(ethylene glycol) diacrylate (PEGDA) and acrylic acid (AA) is characterized and optimized for movement and biocompatibility. Hydrogel sample thickness, overall polymer concentration, and the ratio of PEGDA to AA were found to significantly impact the actuation response. C2C12 mouse myoblast cells attached and proliferated on hydrogel samples with various ratios of PEGDA to AA. Future experiments will produce hydrogel samples combined with aligned guidance cues in the form of electrospun fibers to provide a favorable environment for muscle development. [Display omitted] •A biocompatible actuator may help develop muscle tissue in vitro.•An actuator made of PEGDA and acrylic acid (AA) was produced and characterized.•Actuation was optimized with respect to sample geometry and composition.•Despite less than optimal adhesion, cells attached and survived on PEGDA-AA slabs.
doi_str_mv 10.1016/j.polymer.2017.04.044
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6711618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386117304226</els_id><sourcerecordid>2281849338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-37f2d20c64f1f946cdc4cdbbe57f0d5ab8bb0642434abd53b687c7a26d03f2773</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMoTjv6E5QCN-OievKuqo2DNL5gwI2uQyq51Z0mVWmT1ECJP9603TOoG-FAXt-5N8lB6CXBa4KJvN6vD8EvI8Q1xaRZY17EH6EVaRtWU9qRx2iFMaM1ayW5QM9S2mOMqaD8KbpghAspOrlCPzc7HbXJEN0PnV2YKj3ZKhyyG-83wlAVYC6LaVsdm15B3i0eJqi2fjHBv6ms0yYuXme4_j1xplicrXaLjWELPlW6KGY3OOO0r8Y5GQ_pOXoyaJ_gxXm8RN8-vP-6-VTffvn4efPutjaC0VyzZqCWYiP5QIaOS2MNN7bvQTQDtkL3bd9jySlnXPdWsF62jWk0lRazgTYNu0RvT3UPcz-CNTDlqL06RDfquKignfr7ZHI7tQ13SjaESNKWAlfnAjF8nyFlNbpkwHs9QZiTorQlLe8YO6Kv_0H3YY5TeZ4iHW-5KMKFEifKxJBShOHhMgSrY75qr875qmO-CvMiXnyv_nzJg-s-0ALcnIDy6XDnij0ZB5MB6yKYrGxw_2nxC_XQvg8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948458450</pqid></control><display><type>article</type><title>Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles</title><source>Elsevier ScienceDirect Journals</source><creator>Browe, Daniel P. ; Wood, Caroline ; Sze, Matthew T. ; White, Kristopher A. ; Scott, Tracy ; Olabisi, Ronke M. ; Freeman, Joseph W.</creator><creatorcontrib>Browe, Daniel P. ; Wood, Caroline ; Sze, Matthew T. ; White, Kristopher A. ; Scott, Tracy ; Olabisi, Ronke M. ; Freeman, Joseph W.</creatorcontrib><description>Large volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and chemical cues. Electroactive polymers, polymers that change in size or shape in response to an electric field, may be able to provide the optimal environment for muscle growth. In this study, an electroactive polymer made from poly(ethylene glycol) diacrylate (PEGDA) and acrylic acid (AA) is characterized and optimized for movement and biocompatibility. Hydrogel sample thickness, overall polymer concentration, and the ratio of PEGDA to AA were found to significantly impact the actuation response. C2C12 mouse myoblast cells attached and proliferated on hydrogel samples with various ratios of PEGDA to AA. Future experiments will produce hydrogel samples combined with aligned guidance cues in the form of electrospun fibers to provide a favorable environment for muscle development. [Display omitted] •A biocompatible actuator may help develop muscle tissue in vitro.•An actuator made of PEGDA and acrylic acid (AA) was produced and characterized.•Actuation was optimized with respect to sample geometry and composition.•Despite less than optimal adhesion, cells attached and survived on PEGDA-AA slabs.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2017.04.044</identifier><identifier>PMID: 31456596</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acrylic acid ; Actuation ; Artificial muscles ; Biocompatibility ; C2C12 myoblast ; Chemical stimuli ; Cues ; Electric fields ; Electroactive polymer ; Electroactive polymers ; Hydrogel ; Hydrogels ; Mechanical properties ; Muscles ; Optimization ; Polyethylene glycol ; Polymers ; Scaffolds ; Skeletal muscle ; Studies ; Tissue engineering</subject><ispartof>Polymer (Guilford), 2017-05, Vol.117, p.331-341</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 19, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-37f2d20c64f1f946cdc4cdbbe57f0d5ab8bb0642434abd53b687c7a26d03f2773</citedby><cites>FETCH-LOGICAL-c532t-37f2d20c64f1f946cdc4cdbbe57f0d5ab8bb0642434abd53b687c7a26d03f2773</cites><orcidid>0000-0002-3803-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2017.04.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31456596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Browe, Daniel P.</creatorcontrib><creatorcontrib>Wood, Caroline</creatorcontrib><creatorcontrib>Sze, Matthew T.</creatorcontrib><creatorcontrib>White, Kristopher A.</creatorcontrib><creatorcontrib>Scott, Tracy</creatorcontrib><creatorcontrib>Olabisi, Ronke M.</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><title>Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles</title><title>Polymer (Guilford)</title><addtitle>Polymer (Guildf)</addtitle><description>Large volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and chemical cues. Electroactive polymers, polymers that change in size or shape in response to an electric field, may be able to provide the optimal environment for muscle growth. In this study, an electroactive polymer made from poly(ethylene glycol) diacrylate (PEGDA) and acrylic acid (AA) is characterized and optimized for movement and biocompatibility. Hydrogel sample thickness, overall polymer concentration, and the ratio of PEGDA to AA were found to significantly impact the actuation response. C2C12 mouse myoblast cells attached and proliferated on hydrogel samples with various ratios of PEGDA to AA. Future experiments will produce hydrogel samples combined with aligned guidance cues in the form of electrospun fibers to provide a favorable environment for muscle development. [Display omitted] •A biocompatible actuator may help develop muscle tissue in vitro.•An actuator made of PEGDA and acrylic acid (AA) was produced and characterized.•Actuation was optimized with respect to sample geometry and composition.•Despite less than optimal adhesion, cells attached and survived on PEGDA-AA slabs.</description><subject>Acrylic acid</subject><subject>Actuation</subject><subject>Artificial muscles</subject><subject>Biocompatibility</subject><subject>C2C12 myoblast</subject><subject>Chemical stimuli</subject><subject>Cues</subject><subject>Electric fields</subject><subject>Electroactive polymer</subject><subject>Electroactive polymers</subject><subject>Hydrogel</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Muscles</subject><subject>Optimization</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><subject>Scaffolds</subject><subject>Skeletal muscle</subject><subject>Studies</subject><subject>Tissue engineering</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkUuLFDEUhYMoTjv6E5QCN-OievKuqo2DNL5gwI2uQyq51Z0mVWmT1ECJP9603TOoG-FAXt-5N8lB6CXBa4KJvN6vD8EvI8Q1xaRZY17EH6EVaRtWU9qRx2iFMaM1ayW5QM9S2mOMqaD8KbpghAspOrlCPzc7HbXJEN0PnV2YKj3ZKhyyG-83wlAVYC6LaVsdm15B3i0eJqi2fjHBv6ms0yYuXme4_j1xplicrXaLjWELPlW6KGY3OOO0r8Y5GQ_pOXoyaJ_gxXm8RN8-vP-6-VTffvn4efPutjaC0VyzZqCWYiP5QIaOS2MNN7bvQTQDtkL3bd9jySlnXPdWsF62jWk0lRazgTYNu0RvT3UPcz-CNTDlqL06RDfquKignfr7ZHI7tQ13SjaESNKWAlfnAjF8nyFlNbpkwHs9QZiTorQlLe8YO6Kv_0H3YY5TeZ4iHW-5KMKFEifKxJBShOHhMgSrY75qr875qmO-CvMiXnyv_nzJg-s-0ALcnIDy6XDnij0ZB5MB6yKYrGxw_2nxC_XQvg8</recordid><startdate>20170519</startdate><enddate>20170519</enddate><creator>Browe, Daniel P.</creator><creator>Wood, Caroline</creator><creator>Sze, Matthew T.</creator><creator>White, Kristopher A.</creator><creator>Scott, Tracy</creator><creator>Olabisi, Ronke M.</creator><creator>Freeman, Joseph W.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3803-0040</orcidid></search><sort><creationdate>20170519</creationdate><title>Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles</title><author>Browe, Daniel P. ; Wood, Caroline ; Sze, Matthew T. ; White, Kristopher A. ; Scott, Tracy ; Olabisi, Ronke M. ; Freeman, Joseph W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-37f2d20c64f1f946cdc4cdbbe57f0d5ab8bb0642434abd53b687c7a26d03f2773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acrylic acid</topic><topic>Actuation</topic><topic>Artificial muscles</topic><topic>Biocompatibility</topic><topic>C2C12 myoblast</topic><topic>Chemical stimuli</topic><topic>Cues</topic><topic>Electric fields</topic><topic>Electroactive polymer</topic><topic>Electroactive polymers</topic><topic>Hydrogel</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Muscles</topic><topic>Optimization</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><topic>Scaffolds</topic><topic>Skeletal muscle</topic><topic>Studies</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Browe, Daniel P.</creatorcontrib><creatorcontrib>Wood, Caroline</creatorcontrib><creatorcontrib>Sze, Matthew T.</creatorcontrib><creatorcontrib>White, Kristopher A.</creatorcontrib><creatorcontrib>Scott, Tracy</creatorcontrib><creatorcontrib>Olabisi, Ronke M.</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Browe, Daniel P.</au><au>Wood, Caroline</au><au>Sze, Matthew T.</au><au>White, Kristopher A.</au><au>Scott, Tracy</au><au>Olabisi, Ronke M.</au><au>Freeman, Joseph W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles</atitle><jtitle>Polymer (Guilford)</jtitle><addtitle>Polymer (Guildf)</addtitle><date>2017-05-19</date><risdate>2017</risdate><volume>117</volume><spage>331</spage><epage>341</epage><pages>331-341</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Large volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and chemical cues. Electroactive polymers, polymers that change in size or shape in response to an electric field, may be able to provide the optimal environment for muscle growth. In this study, an electroactive polymer made from poly(ethylene glycol) diacrylate (PEGDA) and acrylic acid (AA) is characterized and optimized for movement and biocompatibility. Hydrogel sample thickness, overall polymer concentration, and the ratio of PEGDA to AA were found to significantly impact the actuation response. C2C12 mouse myoblast cells attached and proliferated on hydrogel samples with various ratios of PEGDA to AA. Future experiments will produce hydrogel samples combined with aligned guidance cues in the form of electrospun fibers to provide a favorable environment for muscle development. [Display omitted] •A biocompatible actuator may help develop muscle tissue in vitro.•An actuator made of PEGDA and acrylic acid (AA) was produced and characterized.•Actuation was optimized with respect to sample geometry and composition.•Despite less than optimal adhesion, cells attached and survived on PEGDA-AA slabs.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31456596</pmid><doi>10.1016/j.polymer.2017.04.044</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3803-0040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2017-05, Vol.117, p.331-341
issn 0032-3861
1873-2291
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6711618
source Elsevier ScienceDirect Journals
subjects Acrylic acid
Actuation
Artificial muscles
Biocompatibility
C2C12 myoblast
Chemical stimuli
Cues
Electric fields
Electroactive polymer
Electroactive polymers
Hydrogel
Hydrogels
Mechanical properties
Muscles
Optimization
Polyethylene glycol
Polymers
Scaffolds
Skeletal muscle
Studies
Tissue engineering
title Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20optimization%20of%20actuating%20poly(ethylene%20glycol)%20diacrylate/acrylic%20acid%20hydrogels%20as%20artificial%20muscles&rft.jtitle=Polymer%20(Guilford)&rft.au=Browe,%20Daniel%20P.&rft.date=2017-05-19&rft.volume=117&rft.spage=331&rft.epage=341&rft.pages=331-341&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2017.04.044&rft_dat=%3Cproquest_pubme%3E2281849338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948458450&rft_id=info:pmid/31456596&rft_els_id=S0032386117304226&rfr_iscdi=true