Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles
Large volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and che...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2017-05, Vol.117, p.331-341 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 341 |
---|---|
container_issue | |
container_start_page | 331 |
container_title | Polymer (Guilford) |
container_volume | 117 |
creator | Browe, Daniel P. Wood, Caroline Sze, Matthew T. White, Kristopher A. Scott, Tracy Olabisi, Ronke M. Freeman, Joseph W. |
description | Large volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and chemical cues. Electroactive polymers, polymers that change in size or shape in response to an electric field, may be able to provide the optimal environment for muscle growth. In this study, an electroactive polymer made from poly(ethylene glycol) diacrylate (PEGDA) and acrylic acid (AA) is characterized and optimized for movement and biocompatibility. Hydrogel sample thickness, overall polymer concentration, and the ratio of PEGDA to AA were found to significantly impact the actuation response. C2C12 mouse myoblast cells attached and proliferated on hydrogel samples with various ratios of PEGDA to AA. Future experiments will produce hydrogel samples combined with aligned guidance cues in the form of electrospun fibers to provide a favorable environment for muscle development.
[Display omitted]
•A biocompatible actuator may help develop muscle tissue in vitro.•An actuator made of PEGDA and acrylic acid (AA) was produced and characterized.•Actuation was optimized with respect to sample geometry and composition.•Despite less than optimal adhesion, cells attached and survived on PEGDA-AA slabs. |
doi_str_mv | 10.1016/j.polymer.2017.04.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6711618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386117304226</els_id><sourcerecordid>2281849338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-37f2d20c64f1f946cdc4cdbbe57f0d5ab8bb0642434abd53b687c7a26d03f2773</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMoTjv6E5QCN-OievKuqo2DNL5gwI2uQyq51Z0mVWmT1ECJP9603TOoG-FAXt-5N8lB6CXBa4KJvN6vD8EvI8Q1xaRZY17EH6EVaRtWU9qRx2iFMaM1ayW5QM9S2mOMqaD8KbpghAspOrlCPzc7HbXJEN0PnV2YKj3ZKhyyG-83wlAVYC6LaVsdm15B3i0eJqi2fjHBv6ms0yYuXme4_j1xplicrXaLjWELPlW6KGY3OOO0r8Y5GQ_pOXoyaJ_gxXm8RN8-vP-6-VTffvn4efPutjaC0VyzZqCWYiP5QIaOS2MNN7bvQTQDtkL3bd9jySlnXPdWsF62jWk0lRazgTYNu0RvT3UPcz-CNTDlqL06RDfquKignfr7ZHI7tQ13SjaESNKWAlfnAjF8nyFlNbpkwHs9QZiTorQlLe8YO6Kv_0H3YY5TeZ4iHW-5KMKFEifKxJBShOHhMgSrY75qr875qmO-CvMiXnyv_nzJg-s-0ALcnIDy6XDnij0ZB5MB6yKYrGxw_2nxC_XQvg8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948458450</pqid></control><display><type>article</type><title>Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles</title><source>Elsevier ScienceDirect Journals</source><creator>Browe, Daniel P. ; Wood, Caroline ; Sze, Matthew T. ; White, Kristopher A. ; Scott, Tracy ; Olabisi, Ronke M. ; Freeman, Joseph W.</creator><creatorcontrib>Browe, Daniel P. ; Wood, Caroline ; Sze, Matthew T. ; White, Kristopher A. ; Scott, Tracy ; Olabisi, Ronke M. ; Freeman, Joseph W.</creatorcontrib><description>Large volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and chemical cues. Electroactive polymers, polymers that change in size or shape in response to an electric field, may be able to provide the optimal environment for muscle growth. In this study, an electroactive polymer made from poly(ethylene glycol) diacrylate (PEGDA) and acrylic acid (AA) is characterized and optimized for movement and biocompatibility. Hydrogel sample thickness, overall polymer concentration, and the ratio of PEGDA to AA were found to significantly impact the actuation response. C2C12 mouse myoblast cells attached and proliferated on hydrogel samples with various ratios of PEGDA to AA. Future experiments will produce hydrogel samples combined with aligned guidance cues in the form of electrospun fibers to provide a favorable environment for muscle development.
[Display omitted]
•A biocompatible actuator may help develop muscle tissue in vitro.•An actuator made of PEGDA and acrylic acid (AA) was produced and characterized.•Actuation was optimized with respect to sample geometry and composition.•Despite less than optimal adhesion, cells attached and survived on PEGDA-AA slabs.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2017.04.044</identifier><identifier>PMID: 31456596</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acrylic acid ; Actuation ; Artificial muscles ; Biocompatibility ; C2C12 myoblast ; Chemical stimuli ; Cues ; Electric fields ; Electroactive polymer ; Electroactive polymers ; Hydrogel ; Hydrogels ; Mechanical properties ; Muscles ; Optimization ; Polyethylene glycol ; Polymers ; Scaffolds ; Skeletal muscle ; Studies ; Tissue engineering</subject><ispartof>Polymer (Guilford), 2017-05, Vol.117, p.331-341</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 19, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-37f2d20c64f1f946cdc4cdbbe57f0d5ab8bb0642434abd53b687c7a26d03f2773</citedby><cites>FETCH-LOGICAL-c532t-37f2d20c64f1f946cdc4cdbbe57f0d5ab8bb0642434abd53b687c7a26d03f2773</cites><orcidid>0000-0002-3803-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2017.04.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31456596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Browe, Daniel P.</creatorcontrib><creatorcontrib>Wood, Caroline</creatorcontrib><creatorcontrib>Sze, Matthew T.</creatorcontrib><creatorcontrib>White, Kristopher A.</creatorcontrib><creatorcontrib>Scott, Tracy</creatorcontrib><creatorcontrib>Olabisi, Ronke M.</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><title>Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles</title><title>Polymer (Guilford)</title><addtitle>Polymer (Guildf)</addtitle><description>Large volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and chemical cues. Electroactive polymers, polymers that change in size or shape in response to an electric field, may be able to provide the optimal environment for muscle growth. In this study, an electroactive polymer made from poly(ethylene glycol) diacrylate (PEGDA) and acrylic acid (AA) is characterized and optimized for movement and biocompatibility. Hydrogel sample thickness, overall polymer concentration, and the ratio of PEGDA to AA were found to significantly impact the actuation response. C2C12 mouse myoblast cells attached and proliferated on hydrogel samples with various ratios of PEGDA to AA. Future experiments will produce hydrogel samples combined with aligned guidance cues in the form of electrospun fibers to provide a favorable environment for muscle development.
[Display omitted]
•A biocompatible actuator may help develop muscle tissue in vitro.•An actuator made of PEGDA and acrylic acid (AA) was produced and characterized.•Actuation was optimized with respect to sample geometry and composition.•Despite less than optimal adhesion, cells attached and survived on PEGDA-AA slabs.</description><subject>Acrylic acid</subject><subject>Actuation</subject><subject>Artificial muscles</subject><subject>Biocompatibility</subject><subject>C2C12 myoblast</subject><subject>Chemical stimuli</subject><subject>Cues</subject><subject>Electric fields</subject><subject>Electroactive polymer</subject><subject>Electroactive polymers</subject><subject>Hydrogel</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Muscles</subject><subject>Optimization</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><subject>Scaffolds</subject><subject>Skeletal muscle</subject><subject>Studies</subject><subject>Tissue engineering</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkUuLFDEUhYMoTjv6E5QCN-OievKuqo2DNL5gwI2uQyq51Z0mVWmT1ECJP9603TOoG-FAXt-5N8lB6CXBa4KJvN6vD8EvI8Q1xaRZY17EH6EVaRtWU9qRx2iFMaM1ayW5QM9S2mOMqaD8KbpghAspOrlCPzc7HbXJEN0PnV2YKj3ZKhyyG-83wlAVYC6LaVsdm15B3i0eJqi2fjHBv6ms0yYuXme4_j1xplicrXaLjWELPlW6KGY3OOO0r8Y5GQ_pOXoyaJ_gxXm8RN8-vP-6-VTffvn4efPutjaC0VyzZqCWYiP5QIaOS2MNN7bvQTQDtkL3bd9jySlnXPdWsF62jWk0lRazgTYNu0RvT3UPcz-CNTDlqL06RDfquKignfr7ZHI7tQ13SjaESNKWAlfnAjF8nyFlNbpkwHs9QZiTorQlLe8YO6Kv_0H3YY5TeZ4iHW-5KMKFEifKxJBShOHhMgSrY75qr875qmO-CvMiXnyv_nzJg-s-0ALcnIDy6XDnij0ZB5MB6yKYrGxw_2nxC_XQvg8</recordid><startdate>20170519</startdate><enddate>20170519</enddate><creator>Browe, Daniel P.</creator><creator>Wood, Caroline</creator><creator>Sze, Matthew T.</creator><creator>White, Kristopher A.</creator><creator>Scott, Tracy</creator><creator>Olabisi, Ronke M.</creator><creator>Freeman, Joseph W.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3803-0040</orcidid></search><sort><creationdate>20170519</creationdate><title>Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles</title><author>Browe, Daniel P. ; Wood, Caroline ; Sze, Matthew T. ; White, Kristopher A. ; Scott, Tracy ; Olabisi, Ronke M. ; Freeman, Joseph W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-37f2d20c64f1f946cdc4cdbbe57f0d5ab8bb0642434abd53b687c7a26d03f2773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acrylic acid</topic><topic>Actuation</topic><topic>Artificial muscles</topic><topic>Biocompatibility</topic><topic>C2C12 myoblast</topic><topic>Chemical stimuli</topic><topic>Cues</topic><topic>Electric fields</topic><topic>Electroactive polymer</topic><topic>Electroactive polymers</topic><topic>Hydrogel</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Muscles</topic><topic>Optimization</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><topic>Scaffolds</topic><topic>Skeletal muscle</topic><topic>Studies</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Browe, Daniel P.</creatorcontrib><creatorcontrib>Wood, Caroline</creatorcontrib><creatorcontrib>Sze, Matthew T.</creatorcontrib><creatorcontrib>White, Kristopher A.</creatorcontrib><creatorcontrib>Scott, Tracy</creatorcontrib><creatorcontrib>Olabisi, Ronke M.</creatorcontrib><creatorcontrib>Freeman, Joseph W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Browe, Daniel P.</au><au>Wood, Caroline</au><au>Sze, Matthew T.</au><au>White, Kristopher A.</au><au>Scott, Tracy</au><au>Olabisi, Ronke M.</au><au>Freeman, Joseph W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles</atitle><jtitle>Polymer (Guilford)</jtitle><addtitle>Polymer (Guildf)</addtitle><date>2017-05-19</date><risdate>2017</risdate><volume>117</volume><spage>331</spage><epage>341</epage><pages>331-341</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Large volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and chemical cues. Electroactive polymers, polymers that change in size or shape in response to an electric field, may be able to provide the optimal environment for muscle growth. In this study, an electroactive polymer made from poly(ethylene glycol) diacrylate (PEGDA) and acrylic acid (AA) is characterized and optimized for movement and biocompatibility. Hydrogel sample thickness, overall polymer concentration, and the ratio of PEGDA to AA were found to significantly impact the actuation response. C2C12 mouse myoblast cells attached and proliferated on hydrogel samples with various ratios of PEGDA to AA. Future experiments will produce hydrogel samples combined with aligned guidance cues in the form of electrospun fibers to provide a favorable environment for muscle development.
[Display omitted]
•A biocompatible actuator may help develop muscle tissue in vitro.•An actuator made of PEGDA and acrylic acid (AA) was produced and characterized.•Actuation was optimized with respect to sample geometry and composition.•Despite less than optimal adhesion, cells attached and survived on PEGDA-AA slabs.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31456596</pmid><doi>10.1016/j.polymer.2017.04.044</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3803-0040</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2017-05, Vol.117, p.331-341 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6711618 |
source | Elsevier ScienceDirect Journals |
subjects | Acrylic acid Actuation Artificial muscles Biocompatibility C2C12 myoblast Chemical stimuli Cues Electric fields Electroactive polymer Electroactive polymers Hydrogel Hydrogels Mechanical properties Muscles Optimization Polyethylene glycol Polymers Scaffolds Skeletal muscle Studies Tissue engineering |
title | Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20optimization%20of%20actuating%20poly(ethylene%20glycol)%20diacrylate/acrylic%20acid%20hydrogels%20as%20artificial%20muscles&rft.jtitle=Polymer%20(Guilford)&rft.au=Browe,%20Daniel%20P.&rft.date=2017-05-19&rft.volume=117&rft.spage=331&rft.epage=341&rft.pages=331-341&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2017.04.044&rft_dat=%3Cproquest_pubme%3E2281849338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948458450&rft_id=info:pmid/31456596&rft_els_id=S0032386117304226&rfr_iscdi=true |