Thirst regulates motivated behavior through modulation of brainwide neural population dynamics

Physiological needs produce motivational drives, such as thirst and hunger, that regulate behaviors essential to survival. Hypothalamic neurons sense these needs and must coordinate relevant brainwide neuronal activity to produce the appropriate behavior. We studied dynamics from ~24,000 neurons in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-04, Vol.364 (6437), p.253-253
Hauptverfasser: Allen, William E., Chen, Michael Z., Pichamoorthy, Nandini, Tien, Rebecca H., Pachitariu, Marius, Luo, Liqun, Deisseroth, Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 6437
container_start_page 253
container_title Science (American Association for the Advancement of Science)
container_volume 364
creator Allen, William E.
Chen, Michael Z.
Pichamoorthy, Nandini
Tien, Rebecca H.
Pachitariu, Marius
Luo, Liqun
Deisseroth, Karl
description Physiological needs produce motivational drives, such as thirst and hunger, that regulate behaviors essential to survival. Hypothalamic neurons sense these needs and must coordinate relevant brainwide neuronal activity to produce the appropriate behavior. We studied dynamics from ~24,000 neurons in 34 brain regions during thirst-motivated choice behavior in 21 mice as they consumed water and became sated. Water-predicting sensory cues elicited activity that rapidly spread throughout the brain of thirsty animals. These dynamics were gated by a brainwide mode of population activity that encoded motivational state. After satiation, focal optogenetic activation of hypothalamic thirst-sensing neurons returned global activity to the pre-satiation state. Thus, motivational states specify initial conditions that determine how a brainwide dynamical system transforms sensory input into behavioral output.
doi_str_mv 10.1126/science.aav3932
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6711472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26649336</jstor_id><sourcerecordid>26649336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-c603e565c2e7e5ab9c4ab3b94f650c7f95ed5b77eb41f6557acb3b0b771685d63</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaLZpzz21GHrpxcnI-lpdCiX0IxDIJb1WyPJ4rcWWtpK9Jf--CrtZ2pw0zPNomOEl5B2FS0obeZWdx-Dw0to906x5QVYUtKh1A-wlWQEwWa9BiXPyOuctQGGavSLnDDRfcw4r8ut-8CnPVcLNMtoZczXF2e9L1VUtDnbvY6rmIcVlMxTUPUo-hir2VZusD398h1XAJdmx2sXdE-4egp28y2_IWW_HjG-P7wX5-e3r_fWP-vbu-831l9vaCdBz7SQwFFK4BhUK22rHbctazXspwKleC-xEqxS2nJaWUNYVDKVD5Vp0kl2Qz4e5u6WdsHMY5rKR2SU_2fRgovXmfxL8YDZxb6SilKumDPh0HJDi7wXzbCafHY6jDRiXbJoGuNSMKyjqx2fqNi4plPOKRSmT0AhVrKuD5VLMOWF_WoaCeczOHLMzx-zKjw__3nDyn8IqwvuDsM1zTCfeSMk1Y5L9BbICpFY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211360257</pqid></control><display><type>article</type><title>Thirst regulates motivated behavior through modulation of brainwide neural population dynamics</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Allen, William E. ; Chen, Michael Z. ; Pichamoorthy, Nandini ; Tien, Rebecca H. ; Pachitariu, Marius ; Luo, Liqun ; Deisseroth, Karl</creator><creatorcontrib>Allen, William E. ; Chen, Michael Z. ; Pichamoorthy, Nandini ; Tien, Rebecca H. ; Pachitariu, Marius ; Luo, Liqun ; Deisseroth, Karl</creatorcontrib><description>Physiological needs produce motivational drives, such as thirst and hunger, that regulate behaviors essential to survival. Hypothalamic neurons sense these needs and must coordinate relevant brainwide neuronal activity to produce the appropriate behavior. We studied dynamics from ~24,000 neurons in 34 brain regions during thirst-motivated choice behavior in 21 mice as they consumed water and became sated. Water-predicting sensory cues elicited activity that rapidly spread throughout the brain of thirsty animals. These dynamics were gated by a brainwide mode of population activity that encoded motivational state. After satiation, focal optogenetic activation of hypothalamic thirst-sensing neurons returned global activity to the pre-satiation state. Thus, motivational states specify initial conditions that determine how a brainwide dynamical system transforms sensory input into behavioral output.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aav3932</identifier><identifier>PMID: 30948440</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Amygdala ; Animal behavior ; Animals ; Anxiety ; Arousal ; Behavior ; Brain ; Choice Behavior - physiology ; Coding ; Correlation ; Decision making ; Drinking water ; Dynamics ; Electrophysiological recording ; Exploratory behavior ; Feedback (Response) ; Female ; Flow mapping ; Hunger ; Hypothalamus ; Hypothalamus - cytology ; Hypothalamus - physiology ; Initial conditions ; Mice ; Mice, Inbred C57BL ; Motivation ; Motor activity ; Motor task performance ; Neural networks ; Neural Pathways - physiology ; Neurons ; Neurons - physiology ; Odor ; Odors ; Olfactory pathways ; Optogenetics ; Physiology ; Recording ; Representations ; RESEARCH ARTICLE SUMMARY ; Satiety ; Sensorimotor integration ; Sensory evaluation ; Sensory Receptor Cells - physiology ; Sensory stimulation ; Single-Cell Analysis ; Somatosensory cortex ; Stimuli ; Survival ; Technology ; Thirst ; Thirst - physiology ; Visual cortex ; Visual stimuli ; Water</subject><ispartof>Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6437), p.253-253</ispartof><rights>Copyright © 2019, American Association for the Advancement of Science.</rights><rights>Copyright © 2019, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-c603e565c2e7e5ab9c4ab3b94f650c7f95ed5b77eb41f6557acb3b0b771685d63</citedby><cites>FETCH-LOGICAL-c509t-c603e565c2e7e5ab9c4ab3b94f650c7f95ed5b77eb41f6557acb3b0b771685d63</cites><orcidid>0000-0002-3674-666X ; 0000-0002-2998-9014 ; 0000-0001-9590-953X ; 0000-0001-9440-3967 ; 0000-0001-7106-814X ; 0000-0001-5467-9264 ; 0000-0001-6969-9911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2870,2871,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30948440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allen, William E.</creatorcontrib><creatorcontrib>Chen, Michael Z.</creatorcontrib><creatorcontrib>Pichamoorthy, Nandini</creatorcontrib><creatorcontrib>Tien, Rebecca H.</creatorcontrib><creatorcontrib>Pachitariu, Marius</creatorcontrib><creatorcontrib>Luo, Liqun</creatorcontrib><creatorcontrib>Deisseroth, Karl</creatorcontrib><title>Thirst regulates motivated behavior through modulation of brainwide neural population dynamics</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Physiological needs produce motivational drives, such as thirst and hunger, that regulate behaviors essential to survival. Hypothalamic neurons sense these needs and must coordinate relevant brainwide neuronal activity to produce the appropriate behavior. We studied dynamics from ~24,000 neurons in 34 brain regions during thirst-motivated choice behavior in 21 mice as they consumed water and became sated. Water-predicting sensory cues elicited activity that rapidly spread throughout the brain of thirsty animals. These dynamics were gated by a brainwide mode of population activity that encoded motivational state. After satiation, focal optogenetic activation of hypothalamic thirst-sensing neurons returned global activity to the pre-satiation state. Thus, motivational states specify initial conditions that determine how a brainwide dynamical system transforms sensory input into behavioral output.</description><subject>Amygdala</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Anxiety</subject><subject>Arousal</subject><subject>Behavior</subject><subject>Brain</subject><subject>Choice Behavior - physiology</subject><subject>Coding</subject><subject>Correlation</subject><subject>Decision making</subject><subject>Drinking water</subject><subject>Dynamics</subject><subject>Electrophysiological recording</subject><subject>Exploratory behavior</subject><subject>Feedback (Response)</subject><subject>Female</subject><subject>Flow mapping</subject><subject>Hunger</subject><subject>Hypothalamus</subject><subject>Hypothalamus - cytology</subject><subject>Hypothalamus - physiology</subject><subject>Initial conditions</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Motivation</subject><subject>Motor activity</subject><subject>Motor task performance</subject><subject>Neural networks</subject><subject>Neural Pathways - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Odor</subject><subject>Odors</subject><subject>Olfactory pathways</subject><subject>Optogenetics</subject><subject>Physiology</subject><subject>Recording</subject><subject>Representations</subject><subject>RESEARCH ARTICLE SUMMARY</subject><subject>Satiety</subject><subject>Sensorimotor integration</subject><subject>Sensory evaluation</subject><subject>Sensory Receptor Cells - physiology</subject><subject>Sensory stimulation</subject><subject>Single-Cell Analysis</subject><subject>Somatosensory cortex</subject><subject>Stimuli</subject><subject>Survival</subject><subject>Technology</subject><subject>Thirst</subject><subject>Thirst - physiology</subject><subject>Visual cortex</subject><subject>Visual stimuli</subject><subject>Water</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1r3DAQhkVpaLZpzz21GHrpxcnI-lpdCiX0IxDIJb1WyPJ4rcWWtpK9Jf--CrtZ2pw0zPNomOEl5B2FS0obeZWdx-Dw0to906x5QVYUtKh1A-wlWQEwWa9BiXPyOuctQGGavSLnDDRfcw4r8ut-8CnPVcLNMtoZczXF2e9L1VUtDnbvY6rmIcVlMxTUPUo-hir2VZusD398h1XAJdmx2sXdE-4egp28y2_IWW_HjG-P7wX5-e3r_fWP-vbu-831l9vaCdBz7SQwFFK4BhUK22rHbctazXspwKleC-xEqxS2nJaWUNYVDKVD5Vp0kl2Qz4e5u6WdsHMY5rKR2SU_2fRgovXmfxL8YDZxb6SilKumDPh0HJDi7wXzbCafHY6jDRiXbJoGuNSMKyjqx2fqNi4plPOKRSmT0AhVrKuD5VLMOWF_WoaCeczOHLMzx-zKjw__3nDyn8IqwvuDsM1zTCfeSMk1Y5L9BbICpFY</recordid><startdate>20190419</startdate><enddate>20190419</enddate><creator>Allen, William E.</creator><creator>Chen, Michael Z.</creator><creator>Pichamoorthy, Nandini</creator><creator>Tien, Rebecca H.</creator><creator>Pachitariu, Marius</creator><creator>Luo, Liqun</creator><creator>Deisseroth, Karl</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3674-666X</orcidid><orcidid>https://orcid.org/0000-0002-2998-9014</orcidid><orcidid>https://orcid.org/0000-0001-9590-953X</orcidid><orcidid>https://orcid.org/0000-0001-9440-3967</orcidid><orcidid>https://orcid.org/0000-0001-7106-814X</orcidid><orcidid>https://orcid.org/0000-0001-5467-9264</orcidid><orcidid>https://orcid.org/0000-0001-6969-9911</orcidid></search><sort><creationdate>20190419</creationdate><title>Thirst regulates motivated behavior through modulation of brainwide neural population dynamics</title><author>Allen, William E. ; Chen, Michael Z. ; Pichamoorthy, Nandini ; Tien, Rebecca H. ; Pachitariu, Marius ; Luo, Liqun ; Deisseroth, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-c603e565c2e7e5ab9c4ab3b94f650c7f95ed5b77eb41f6557acb3b0b771685d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amygdala</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Anxiety</topic><topic>Arousal</topic><topic>Behavior</topic><topic>Brain</topic><topic>Choice Behavior - physiology</topic><topic>Coding</topic><topic>Correlation</topic><topic>Decision making</topic><topic>Drinking water</topic><topic>Dynamics</topic><topic>Electrophysiological recording</topic><topic>Exploratory behavior</topic><topic>Feedback (Response)</topic><topic>Female</topic><topic>Flow mapping</topic><topic>Hunger</topic><topic>Hypothalamus</topic><topic>Hypothalamus - cytology</topic><topic>Hypothalamus - physiology</topic><topic>Initial conditions</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Motivation</topic><topic>Motor activity</topic><topic>Motor task performance</topic><topic>Neural networks</topic><topic>Neural Pathways - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Odor</topic><topic>Odors</topic><topic>Olfactory pathways</topic><topic>Optogenetics</topic><topic>Physiology</topic><topic>Recording</topic><topic>Representations</topic><topic>RESEARCH ARTICLE SUMMARY</topic><topic>Satiety</topic><topic>Sensorimotor integration</topic><topic>Sensory evaluation</topic><topic>Sensory Receptor Cells - physiology</topic><topic>Sensory stimulation</topic><topic>Single-Cell Analysis</topic><topic>Somatosensory cortex</topic><topic>Stimuli</topic><topic>Survival</topic><topic>Technology</topic><topic>Thirst</topic><topic>Thirst - physiology</topic><topic>Visual cortex</topic><topic>Visual stimuli</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allen, William E.</creatorcontrib><creatorcontrib>Chen, Michael Z.</creatorcontrib><creatorcontrib>Pichamoorthy, Nandini</creatorcontrib><creatorcontrib>Tien, Rebecca H.</creatorcontrib><creatorcontrib>Pachitariu, Marius</creatorcontrib><creatorcontrib>Luo, Liqun</creatorcontrib><creatorcontrib>Deisseroth, Karl</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allen, William E.</au><au>Chen, Michael Z.</au><au>Pichamoorthy, Nandini</au><au>Tien, Rebecca H.</au><au>Pachitariu, Marius</au><au>Luo, Liqun</au><au>Deisseroth, Karl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thirst regulates motivated behavior through modulation of brainwide neural population dynamics</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-04-19</date><risdate>2019</risdate><volume>364</volume><issue>6437</issue><spage>253</spage><epage>253</epage><pages>253-253</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Physiological needs produce motivational drives, such as thirst and hunger, that regulate behaviors essential to survival. Hypothalamic neurons sense these needs and must coordinate relevant brainwide neuronal activity to produce the appropriate behavior. We studied dynamics from ~24,000 neurons in 34 brain regions during thirst-motivated choice behavior in 21 mice as they consumed water and became sated. Water-predicting sensory cues elicited activity that rapidly spread throughout the brain of thirsty animals. These dynamics were gated by a brainwide mode of population activity that encoded motivational state. After satiation, focal optogenetic activation of hypothalamic thirst-sensing neurons returned global activity to the pre-satiation state. Thus, motivational states specify initial conditions that determine how a brainwide dynamical system transforms sensory input into behavioral output.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>30948440</pmid><doi>10.1126/science.aav3932</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3674-666X</orcidid><orcidid>https://orcid.org/0000-0002-2998-9014</orcidid><orcidid>https://orcid.org/0000-0001-9590-953X</orcidid><orcidid>https://orcid.org/0000-0001-9440-3967</orcidid><orcidid>https://orcid.org/0000-0001-7106-814X</orcidid><orcidid>https://orcid.org/0000-0001-5467-9264</orcidid><orcidid>https://orcid.org/0000-0001-6969-9911</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6437), p.253-253
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6711472
source American Association for the Advancement of Science; MEDLINE
subjects Amygdala
Animal behavior
Animals
Anxiety
Arousal
Behavior
Brain
Choice Behavior - physiology
Coding
Correlation
Decision making
Drinking water
Dynamics
Electrophysiological recording
Exploratory behavior
Feedback (Response)
Female
Flow mapping
Hunger
Hypothalamus
Hypothalamus - cytology
Hypothalamus - physiology
Initial conditions
Mice
Mice, Inbred C57BL
Motivation
Motor activity
Motor task performance
Neural networks
Neural Pathways - physiology
Neurons
Neurons - physiology
Odor
Odors
Olfactory pathways
Optogenetics
Physiology
Recording
Representations
RESEARCH ARTICLE SUMMARY
Satiety
Sensorimotor integration
Sensory evaluation
Sensory Receptor Cells - physiology
Sensory stimulation
Single-Cell Analysis
Somatosensory cortex
Stimuli
Survival
Technology
Thirst
Thirst - physiology
Visual cortex
Visual stimuli
Water
title Thirst regulates motivated behavior through modulation of brainwide neural population dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thirst%20regulates%20motivated%20behavior%20through%20modulation%20of%20brainwide%20neural%20population%20dynamics&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Allen,%20William%20E.&rft.date=2019-04-19&rft.volume=364&rft.issue=6437&rft.spage=253&rft.epage=253&rft.pages=253-253&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aav3932&rft_dat=%3Cjstor_pubme%3E26649336%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211360257&rft_id=info:pmid/30948440&rft_jstor_id=26649336&rfr_iscdi=true