Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia
Fibromyalgia is a complex, relatively unknown disease characterised by chronic, widespread musculoskeletal pain. The gut-brain axis connects the gut microbiome with the brain through the enteric nervous system (ENS); its disruption has been associated with psychiatric and gastrointestinal disorders....
Gespeichert in:
Veröffentlicht in: | EBioMedicine 2019-08, Vol.46, p.499-511 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 511 |
---|---|
container_issue | |
container_start_page | 499 |
container_title | EBioMedicine |
container_volume | 46 |
creator | Clos-Garcia, Marc Andrés-Marin, Naiara Fernández-Eulate, Gorka Abecia, Leticia Lavín, José L. van Liempd, Sebastiaan Cabrera, Diana Royo, Félix Valero, Alejandro Errazquin, Nerea Vega, María Cristina Gómez Govillard, Leila Tackett, Michael R. Tejada, Genesis Gónzalez, Esperanza Anguita, Juan Bujanda, Luis Orcasitas, Ana María Callejo Aransay, Ana M. Maíz, Olga López de Munain, Adolfo Falcón-Pérez, Juan Manuel |
description | Fibromyalgia is a complex, relatively unknown disease characterised by chronic, widespread musculoskeletal pain. The gut-brain axis connects the gut microbiome with the brain through the enteric nervous system (ENS); its disruption has been associated with psychiatric and gastrointestinal disorders. To gain an insight into the pathogenesis of fibromyalgia and identify diagnostic biomarkers, we combined different omics techniques to analyse microbiome and serum composition.
We collected faeces and blood samples to study the microbiome, the serum metabolome and circulating cytokines and miRNAs from a cohort of 105 fibromyalgia patients and 54 age- and environment-matched healthy individuals. We sequenced the V3 and V4 regions of the 16S rDNA gene from faeces samples. UPLC-MS metabolomics and custom multiplex cytokine and miRNA analysis (FirePlex™ technology) were used to examine sera samples. Finally, we combined the different data types to search for potential biomarkers.
We found that the diversity of bacteria is reduced in fibromyalgia patients. The abundance of the Bifidobacterium and Eubacterium genera (bacteria participating in the metabolism of neurotransmitters in the host) in these patients was significantly reduced. The serum metabolome analysis revealed altered levels of glutamate and serine, suggesting changes in neurotransmitter metabolism. The combined serum metabolomics and gut microbiome datasets showed a certain degree of correlation, reflecting the effect of the microbiome on metabolic activity. We also examined the microbiome and serum metabolites, cytokines and miRNAs as potential sources of molecular biomarkers of fibromyalgia.
Our results show that the microbiome analysis provides more significant biomarkers than the other techniques employed in the work. Gut microbiome analysis combined with serum metabolomics can shed new light onto the pathogenesis of fibromyalgia. We provide a list of bacteria whose abundance changes in this disease and propose several molecules as potential biomarkers that can be used to evaluate the current diagnostic criteria. |
doi_str_mv | 10.1016/j.ebiom.2019.07.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6710987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352396419304736</els_id><sourcerecordid>2261970193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-91c3251d42945428c8b460961556c265498dd2bbb51b1a2c4283eb5388f450883</originalsourceid><addsrcrecordid>eNp9kUtrFTEYhgdRbKn9BYJk6eaMuUwyk4WCFK2Fghtdh1y-OeaYTGqSKRz88-b0tKXduEpI3vf9Lk_XvSW4J5iID7sejE-xp5jIHo89ZuRFd0oZpxsmxfDyyf2kOy9lhzEmfGiP0-vuhBFGRyH5aff3cq0oepvTIQ6QXhwqkNeIIlRtUjg-6rAvUJB3sFQ_71FMAewadEYHm86_IZc7rw4VMji0DWvVUVd4yPElIr-g2Zuc4l6HrddvulezDgXO78-z7ufXLz8uvm2uv19eXXy-3tiBy7qRxDLKiRuoHNoEk53MILAUhHNhqeCDnJyjxhhODNHUNgkDw9k0zQPH08TOuk_H3JvVRHC2zZB1UDfZt873Kmmvnv8s_pfaplslRoLlNLaA9_cBOf1ZoVQVfbEQgl4grUVRKogcGwnWpOwobRstJcP8WIZgdSCnduqOnDqQU3hUjVxzvXva4aPngVMTfDwKoO3p1kNWxXpYLDifwVblkv9vgX_y_a20</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261970193</pqid></control><display><type>article</type><title>Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Clos-Garcia, Marc ; Andrés-Marin, Naiara ; Fernández-Eulate, Gorka ; Abecia, Leticia ; Lavín, José L. ; van Liempd, Sebastiaan ; Cabrera, Diana ; Royo, Félix ; Valero, Alejandro ; Errazquin, Nerea ; Vega, María Cristina Gómez ; Govillard, Leila ; Tackett, Michael R. ; Tejada, Genesis ; Gónzalez, Esperanza ; Anguita, Juan ; Bujanda, Luis ; Orcasitas, Ana María Callejo ; Aransay, Ana M. ; Maíz, Olga ; López de Munain, Adolfo ; Falcón-Pérez, Juan Manuel</creator><creatorcontrib>Clos-Garcia, Marc ; Andrés-Marin, Naiara ; Fernández-Eulate, Gorka ; Abecia, Leticia ; Lavín, José L. ; van Liempd, Sebastiaan ; Cabrera, Diana ; Royo, Félix ; Valero, Alejandro ; Errazquin, Nerea ; Vega, María Cristina Gómez ; Govillard, Leila ; Tackett, Michael R. ; Tejada, Genesis ; Gónzalez, Esperanza ; Anguita, Juan ; Bujanda, Luis ; Orcasitas, Ana María Callejo ; Aransay, Ana M. ; Maíz, Olga ; López de Munain, Adolfo ; Falcón-Pérez, Juan Manuel</creatorcontrib><description>Fibromyalgia is a complex, relatively unknown disease characterised by chronic, widespread musculoskeletal pain. The gut-brain axis connects the gut microbiome with the brain through the enteric nervous system (ENS); its disruption has been associated with psychiatric and gastrointestinal disorders. To gain an insight into the pathogenesis of fibromyalgia and identify diagnostic biomarkers, we combined different omics techniques to analyse microbiome and serum composition.
We collected faeces and blood samples to study the microbiome, the serum metabolome and circulating cytokines and miRNAs from a cohort of 105 fibromyalgia patients and 54 age- and environment-matched healthy individuals. We sequenced the V3 and V4 regions of the 16S rDNA gene from faeces samples. UPLC-MS metabolomics and custom multiplex cytokine and miRNA analysis (FirePlex™ technology) were used to examine sera samples. Finally, we combined the different data types to search for potential biomarkers.
We found that the diversity of bacteria is reduced in fibromyalgia patients. The abundance of the Bifidobacterium and Eubacterium genera (bacteria participating in the metabolism of neurotransmitters in the host) in these patients was significantly reduced. The serum metabolome analysis revealed altered levels of glutamate and serine, suggesting changes in neurotransmitter metabolism. The combined serum metabolomics and gut microbiome datasets showed a certain degree of correlation, reflecting the effect of the microbiome on metabolic activity. We also examined the microbiome and serum metabolites, cytokines and miRNAs as potential sources of molecular biomarkers of fibromyalgia.
Our results show that the microbiome analysis provides more significant biomarkers than the other techniques employed in the work. Gut microbiome analysis combined with serum metabolomics can shed new light onto the pathogenesis of fibromyalgia. We provide a list of bacteria whose abundance changes in this disease and propose several molecules as potential biomarkers that can be used to evaluate the current diagnostic criteria.</description><identifier>ISSN: 2352-3964</identifier><identifier>EISSN: 2352-3964</identifier><identifier>DOI: 10.1016/j.ebiom.2019.07.031</identifier><identifier>PMID: 31327695</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adult ; Aged ; Biomarkers ; Chromatography, High Pressure Liquid ; Computational Biology - methods ; Cytokines ; Cytokines - metabolism ; Female ; Fibromyalgia ; Fibromyalgia - etiology ; Fibromyalgia - metabolism ; Gastrointestinal Microbiome ; Glutamates - metabolism ; Gut microbiota ; Humans ; Male ; Metabolome ; Metabolomics ; Metabolomics - methods ; Metagenome ; Metagenomics - methods ; Middle Aged ; miRNAs ; Omics integration ; Pain ; Research paper ; RNA, Ribosomal, 16S - genetics ; ROC Curve ; Tandem Mass Spectrometry</subject><ispartof>EBioMedicine, 2019-08, Vol.46, p.499-511</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier B.V.</rights><rights>2019 The Authors. Published by Elsevier B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-91c3251d42945428c8b460961556c265498dd2bbb51b1a2c4283eb5388f450883</citedby><cites>FETCH-LOGICAL-c459t-91c3251d42945428c8b460961556c265498dd2bbb51b1a2c4283eb5388f450883</cites><orcidid>0000-0002-0208-1372 ; 0000-0003-4097-8903 ; 0000-0002-3831-4596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710987/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710987/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31327695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clos-Garcia, Marc</creatorcontrib><creatorcontrib>Andrés-Marin, Naiara</creatorcontrib><creatorcontrib>Fernández-Eulate, Gorka</creatorcontrib><creatorcontrib>Abecia, Leticia</creatorcontrib><creatorcontrib>Lavín, José L.</creatorcontrib><creatorcontrib>van Liempd, Sebastiaan</creatorcontrib><creatorcontrib>Cabrera, Diana</creatorcontrib><creatorcontrib>Royo, Félix</creatorcontrib><creatorcontrib>Valero, Alejandro</creatorcontrib><creatorcontrib>Errazquin, Nerea</creatorcontrib><creatorcontrib>Vega, María Cristina Gómez</creatorcontrib><creatorcontrib>Govillard, Leila</creatorcontrib><creatorcontrib>Tackett, Michael R.</creatorcontrib><creatorcontrib>Tejada, Genesis</creatorcontrib><creatorcontrib>Gónzalez, Esperanza</creatorcontrib><creatorcontrib>Anguita, Juan</creatorcontrib><creatorcontrib>Bujanda, Luis</creatorcontrib><creatorcontrib>Orcasitas, Ana María Callejo</creatorcontrib><creatorcontrib>Aransay, Ana M.</creatorcontrib><creatorcontrib>Maíz, Olga</creatorcontrib><creatorcontrib>López de Munain, Adolfo</creatorcontrib><creatorcontrib>Falcón-Pérez, Juan Manuel</creatorcontrib><title>Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia</title><title>EBioMedicine</title><addtitle>EBioMedicine</addtitle><description>Fibromyalgia is a complex, relatively unknown disease characterised by chronic, widespread musculoskeletal pain. The gut-brain axis connects the gut microbiome with the brain through the enteric nervous system (ENS); its disruption has been associated with psychiatric and gastrointestinal disorders. To gain an insight into the pathogenesis of fibromyalgia and identify diagnostic biomarkers, we combined different omics techniques to analyse microbiome and serum composition.
We collected faeces and blood samples to study the microbiome, the serum metabolome and circulating cytokines and miRNAs from a cohort of 105 fibromyalgia patients and 54 age- and environment-matched healthy individuals. We sequenced the V3 and V4 regions of the 16S rDNA gene from faeces samples. UPLC-MS metabolomics and custom multiplex cytokine and miRNA analysis (FirePlex™ technology) were used to examine sera samples. Finally, we combined the different data types to search for potential biomarkers.
We found that the diversity of bacteria is reduced in fibromyalgia patients. The abundance of the Bifidobacterium and Eubacterium genera (bacteria participating in the metabolism of neurotransmitters in the host) in these patients was significantly reduced. The serum metabolome analysis revealed altered levels of glutamate and serine, suggesting changes in neurotransmitter metabolism. The combined serum metabolomics and gut microbiome datasets showed a certain degree of correlation, reflecting the effect of the microbiome on metabolic activity. We also examined the microbiome and serum metabolites, cytokines and miRNAs as potential sources of molecular biomarkers of fibromyalgia.
Our results show that the microbiome analysis provides more significant biomarkers than the other techniques employed in the work. Gut microbiome analysis combined with serum metabolomics can shed new light onto the pathogenesis of fibromyalgia. We provide a list of bacteria whose abundance changes in this disease and propose several molecules as potential biomarkers that can be used to evaluate the current diagnostic criteria.</description><subject>Adult</subject><subject>Aged</subject><subject>Biomarkers</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Computational Biology - methods</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Female</subject><subject>Fibromyalgia</subject><subject>Fibromyalgia - etiology</subject><subject>Fibromyalgia - metabolism</subject><subject>Gastrointestinal Microbiome</subject><subject>Glutamates - metabolism</subject><subject>Gut microbiota</subject><subject>Humans</subject><subject>Male</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>Metagenome</subject><subject>Metagenomics - methods</subject><subject>Middle Aged</subject><subject>miRNAs</subject><subject>Omics integration</subject><subject>Pain</subject><subject>Research paper</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>ROC Curve</subject><subject>Tandem Mass Spectrometry</subject><issn>2352-3964</issn><issn>2352-3964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtrFTEYhgdRbKn9BYJk6eaMuUwyk4WCFK2Fghtdh1y-OeaYTGqSKRz88-b0tKXduEpI3vf9Lk_XvSW4J5iID7sejE-xp5jIHo89ZuRFd0oZpxsmxfDyyf2kOy9lhzEmfGiP0-vuhBFGRyH5aff3cq0oepvTIQ6QXhwqkNeIIlRtUjg-6rAvUJB3sFQ_71FMAewadEYHm86_IZc7rw4VMji0DWvVUVd4yPElIr-g2Zuc4l6HrddvulezDgXO78-z7ufXLz8uvm2uv19eXXy-3tiBy7qRxDLKiRuoHNoEk53MILAUhHNhqeCDnJyjxhhODNHUNgkDw9k0zQPH08TOuk_H3JvVRHC2zZB1UDfZt873Kmmvnv8s_pfaplslRoLlNLaA9_cBOf1ZoVQVfbEQgl4grUVRKogcGwnWpOwobRstJcP8WIZgdSCnduqOnDqQU3hUjVxzvXva4aPngVMTfDwKoO3p1kNWxXpYLDifwVblkv9vgX_y_a20</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Clos-Garcia, Marc</creator><creator>Andrés-Marin, Naiara</creator><creator>Fernández-Eulate, Gorka</creator><creator>Abecia, Leticia</creator><creator>Lavín, José L.</creator><creator>van Liempd, Sebastiaan</creator><creator>Cabrera, Diana</creator><creator>Royo, Félix</creator><creator>Valero, Alejandro</creator><creator>Errazquin, Nerea</creator><creator>Vega, María Cristina Gómez</creator><creator>Govillard, Leila</creator><creator>Tackett, Michael R.</creator><creator>Tejada, Genesis</creator><creator>Gónzalez, Esperanza</creator><creator>Anguita, Juan</creator><creator>Bujanda, Luis</creator><creator>Orcasitas, Ana María Callejo</creator><creator>Aransay, Ana M.</creator><creator>Maíz, Olga</creator><creator>López de Munain, Adolfo</creator><creator>Falcón-Pérez, Juan Manuel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0208-1372</orcidid><orcidid>https://orcid.org/0000-0003-4097-8903</orcidid><orcidid>https://orcid.org/0000-0002-3831-4596</orcidid></search><sort><creationdate>20190801</creationdate><title>Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia</title><author>Clos-Garcia, Marc ; Andrés-Marin, Naiara ; Fernández-Eulate, Gorka ; Abecia, Leticia ; Lavín, José L. ; van Liempd, Sebastiaan ; Cabrera, Diana ; Royo, Félix ; Valero, Alejandro ; Errazquin, Nerea ; Vega, María Cristina Gómez ; Govillard, Leila ; Tackett, Michael R. ; Tejada, Genesis ; Gónzalez, Esperanza ; Anguita, Juan ; Bujanda, Luis ; Orcasitas, Ana María Callejo ; Aransay, Ana M. ; Maíz, Olga ; López de Munain, Adolfo ; Falcón-Pérez, Juan Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-91c3251d42945428c8b460961556c265498dd2bbb51b1a2c4283eb5388f450883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Biomarkers</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Computational Biology - methods</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Female</topic><topic>Fibromyalgia</topic><topic>Fibromyalgia - etiology</topic><topic>Fibromyalgia - metabolism</topic><topic>Gastrointestinal Microbiome</topic><topic>Glutamates - metabolism</topic><topic>Gut microbiota</topic><topic>Humans</topic><topic>Male</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>Metagenome</topic><topic>Metagenomics - methods</topic><topic>Middle Aged</topic><topic>miRNAs</topic><topic>Omics integration</topic><topic>Pain</topic><topic>Research paper</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>ROC Curve</topic><topic>Tandem Mass Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clos-Garcia, Marc</creatorcontrib><creatorcontrib>Andrés-Marin, Naiara</creatorcontrib><creatorcontrib>Fernández-Eulate, Gorka</creatorcontrib><creatorcontrib>Abecia, Leticia</creatorcontrib><creatorcontrib>Lavín, José L.</creatorcontrib><creatorcontrib>van Liempd, Sebastiaan</creatorcontrib><creatorcontrib>Cabrera, Diana</creatorcontrib><creatorcontrib>Royo, Félix</creatorcontrib><creatorcontrib>Valero, Alejandro</creatorcontrib><creatorcontrib>Errazquin, Nerea</creatorcontrib><creatorcontrib>Vega, María Cristina Gómez</creatorcontrib><creatorcontrib>Govillard, Leila</creatorcontrib><creatorcontrib>Tackett, Michael R.</creatorcontrib><creatorcontrib>Tejada, Genesis</creatorcontrib><creatorcontrib>Gónzalez, Esperanza</creatorcontrib><creatorcontrib>Anguita, Juan</creatorcontrib><creatorcontrib>Bujanda, Luis</creatorcontrib><creatorcontrib>Orcasitas, Ana María Callejo</creatorcontrib><creatorcontrib>Aransay, Ana M.</creatorcontrib><creatorcontrib>Maíz, Olga</creatorcontrib><creatorcontrib>López de Munain, Adolfo</creatorcontrib><creatorcontrib>Falcón-Pérez, Juan Manuel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EBioMedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clos-Garcia, Marc</au><au>Andrés-Marin, Naiara</au><au>Fernández-Eulate, Gorka</au><au>Abecia, Leticia</au><au>Lavín, José L.</au><au>van Liempd, Sebastiaan</au><au>Cabrera, Diana</au><au>Royo, Félix</au><au>Valero, Alejandro</au><au>Errazquin, Nerea</au><au>Vega, María Cristina Gómez</au><au>Govillard, Leila</au><au>Tackett, Michael R.</au><au>Tejada, Genesis</au><au>Gónzalez, Esperanza</au><au>Anguita, Juan</au><au>Bujanda, Luis</au><au>Orcasitas, Ana María Callejo</au><au>Aransay, Ana M.</au><au>Maíz, Olga</au><au>López de Munain, Adolfo</au><au>Falcón-Pérez, Juan Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia</atitle><jtitle>EBioMedicine</jtitle><addtitle>EBioMedicine</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>46</volume><spage>499</spage><epage>511</epage><pages>499-511</pages><issn>2352-3964</issn><eissn>2352-3964</eissn><abstract>Fibromyalgia is a complex, relatively unknown disease characterised by chronic, widespread musculoskeletal pain. The gut-brain axis connects the gut microbiome with the brain through the enteric nervous system (ENS); its disruption has been associated with psychiatric and gastrointestinal disorders. To gain an insight into the pathogenesis of fibromyalgia and identify diagnostic biomarkers, we combined different omics techniques to analyse microbiome and serum composition.
We collected faeces and blood samples to study the microbiome, the serum metabolome and circulating cytokines and miRNAs from a cohort of 105 fibromyalgia patients and 54 age- and environment-matched healthy individuals. We sequenced the V3 and V4 regions of the 16S rDNA gene from faeces samples. UPLC-MS metabolomics and custom multiplex cytokine and miRNA analysis (FirePlex™ technology) were used to examine sera samples. Finally, we combined the different data types to search for potential biomarkers.
We found that the diversity of bacteria is reduced in fibromyalgia patients. The abundance of the Bifidobacterium and Eubacterium genera (bacteria participating in the metabolism of neurotransmitters in the host) in these patients was significantly reduced. The serum metabolome analysis revealed altered levels of glutamate and serine, suggesting changes in neurotransmitter metabolism. The combined serum metabolomics and gut microbiome datasets showed a certain degree of correlation, reflecting the effect of the microbiome on metabolic activity. We also examined the microbiome and serum metabolites, cytokines and miRNAs as potential sources of molecular biomarkers of fibromyalgia.
Our results show that the microbiome analysis provides more significant biomarkers than the other techniques employed in the work. Gut microbiome analysis combined with serum metabolomics can shed new light onto the pathogenesis of fibromyalgia. We provide a list of bacteria whose abundance changes in this disease and propose several molecules as potential biomarkers that can be used to evaluate the current diagnostic criteria.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31327695</pmid><doi>10.1016/j.ebiom.2019.07.031</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0208-1372</orcidid><orcidid>https://orcid.org/0000-0003-4097-8903</orcidid><orcidid>https://orcid.org/0000-0002-3831-4596</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-3964 |
ispartof | EBioMedicine, 2019-08, Vol.46, p.499-511 |
issn | 2352-3964 2352-3964 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6710987 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adult Aged Biomarkers Chromatography, High Pressure Liquid Computational Biology - methods Cytokines Cytokines - metabolism Female Fibromyalgia Fibromyalgia - etiology Fibromyalgia - metabolism Gastrointestinal Microbiome Glutamates - metabolism Gut microbiota Humans Male Metabolome Metabolomics Metabolomics - methods Metagenome Metagenomics - methods Middle Aged miRNAs Omics integration Pain Research paper RNA, Ribosomal, 16S - genetics ROC Curve Tandem Mass Spectrometry |
title | Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gut%20microbiome%20and%20serum%20metabolome%20analyses%20identify%20molecular%20biomarkers%20and%20altered%20glutamate%20metabolism%20in%20fibromyalgia&rft.jtitle=EBioMedicine&rft.au=Clos-Garcia,%20Marc&rft.date=2019-08-01&rft.volume=46&rft.spage=499&rft.epage=511&rft.pages=499-511&rft.issn=2352-3964&rft.eissn=2352-3964&rft_id=info:doi/10.1016/j.ebiom.2019.07.031&rft_dat=%3Cproquest_pubme%3E2261970193%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261970193&rft_id=info:pmid/31327695&rft_els_id=S2352396419304736&rfr_iscdi=true |