In vivo stabilization of OPA1 in hepatocytes potentiates mitochondrial respiration and gluconeogenesis in a prohibitin-dependent way

Patients with fatty liver diseases present altered mitochondrial morphology and impaired metabolic function. Mitochondrial dynamics and related cell function require the uncleaved form of the dynamin-like GTPase OPA1. Stabilization of OPA1 might then confer a protective mechanism against stress-indu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2019-08, Vol.294 (34), p.12581-12598
Hauptverfasser: Li, Lingzi, Martin-Levilain, Juliette, Jiménez-Sánchez, Cecilia, Karaca, Melis, Foti, Michelangelo, Martinou, Jean-Claude, Maechler, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12598
container_issue 34
container_start_page 12581
container_title The Journal of biological chemistry
container_volume 294
creator Li, Lingzi
Martin-Levilain, Juliette
Jiménez-Sánchez, Cecilia
Karaca, Melis
Foti, Michelangelo
Martinou, Jean-Claude
Maechler, Pierre
description Patients with fatty liver diseases present altered mitochondrial morphology and impaired metabolic function. Mitochondrial dynamics and related cell function require the uncleaved form of the dynamin-like GTPase OPA1. Stabilization of OPA1 might then confer a protective mechanism against stress-induced tissue damages. To study the putative role of hepatic mitochondrial morphology in a sick liver, we expressed a cleavage-resistant long form of OPA1 (L-OPA1Δ) in the liver of a mouse model with mitochondrial liver dysfunction (i.e. the hepatocyte-specific prohibitin-2 knockout (Hep-Phb2−/−) mice). Liver prohibitin-2 deficiency caused excessive proteolytic cleavage of L-OPA1, mitochondrial fragmentation, and increased apoptosis. These molecular alterations were associated with lipid accumulation, abolished gluconeogenesis, and extensive liver damage. Such liver dysfunction was associated with severe hypoglycemia. In prohibitin-2 knockout mice, expression of L-OPA1Δ by in vivo adenovirus delivery restored the morphology but not the function of mitochondria in hepatocytes. In prohibitin-competent mice, elongation of liver mitochondria by expression of L-OPA1Δ resulted in excessive glucose production associated with increased mitochondrial respiration. In conclusion, mitochondrial dynamics participates in the control of hepatic glucose production.
doi_str_mv 10.1074/jbc.RA119.007601
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6709633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820302945</els_id><sourcerecordid>2254510944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-305b0eff494ebb1e75bb1f19b9179cd10317b5502db3163e4789f2c7ded7470e3</originalsourceid><addsrcrecordid>eNp1kc1vEzEQxS0EoqFw54R85LLBs96PmANSVPFRqVIRAomb5bVnk6k29mJvgsK5f3gdtlRwwAd7ZL_3G9uPsZcgliDa6s1NZ5df1gBqKUTbCHjEFiBWspA1fH_MFkKUUKiyXp2xZyndiDwqBU_ZmYRyVZeNXLDbS88PdAg8TaajgX6ZiYLnoefXn9fAyfMtjmYK9jhh4mOY0E9kTvWO8u42eBfJDDxiGinOZuMd3wx7GzyGDXpMlE4gw8cYttTRRL5wOKJ3GcZ_muNz9qQ3Q8IX9-s5-_bh_deLT8XV9cfLi_VVYWuQUyFF3Qns-0pV2HWAbZ3nHlSnoFXWgZDQdnUtStdJaCRW7Ur1pW0durZqBcpz9m7mjvtuh87m9tEMeoy0M_GogyH974mnrd6Eg25aoRopM-D1PSCGH3tMk95RsjgMJj91n3RZ1lUNQlVVlopZamNIKWL_0AaEPoWnc3j6d3h6Di9bXv19vQfDn7Sy4O0swPxJB8KokyX0Fh1FtJN2gf5PvwMnZK2x</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254510944</pqid></control><display><type>article</type><title>In vivo stabilization of OPA1 in hepatocytes potentiates mitochondrial respiration and gluconeogenesis in a prohibitin-dependent way</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Li, Lingzi ; Martin-Levilain, Juliette ; Jiménez-Sánchez, Cecilia ; Karaca, Melis ; Foti, Michelangelo ; Martinou, Jean-Claude ; Maechler, Pierre</creator><creatorcontrib>Li, Lingzi ; Martin-Levilain, Juliette ; Jiménez-Sánchez, Cecilia ; Karaca, Melis ; Foti, Michelangelo ; Martinou, Jean-Claude ; Maechler, Pierre</creatorcontrib><description>Patients with fatty liver diseases present altered mitochondrial morphology and impaired metabolic function. Mitochondrial dynamics and related cell function require the uncleaved form of the dynamin-like GTPase OPA1. Stabilization of OPA1 might then confer a protective mechanism against stress-induced tissue damages. To study the putative role of hepatic mitochondrial morphology in a sick liver, we expressed a cleavage-resistant long form of OPA1 (L-OPA1Δ) in the liver of a mouse model with mitochondrial liver dysfunction (i.e. the hepatocyte-specific prohibitin-2 knockout (Hep-Phb2−/−) mice). Liver prohibitin-2 deficiency caused excessive proteolytic cleavage of L-OPA1, mitochondrial fragmentation, and increased apoptosis. These molecular alterations were associated with lipid accumulation, abolished gluconeogenesis, and extensive liver damage. Such liver dysfunction was associated with severe hypoglycemia. In prohibitin-2 knockout mice, expression of L-OPA1Δ by in vivo adenovirus delivery restored the morphology but not the function of mitochondria in hepatocytes. In prohibitin-competent mice, elongation of liver mitochondria by expression of L-OPA1Δ resulted in excessive glucose production associated with increased mitochondrial respiration. In conclusion, mitochondrial dynamics participates in the control of hepatic glucose production.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.007601</identifier><identifier>PMID: 31285263</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Apoptosis ; Cell Respiration ; Editors' Picks ; Gluconeogenesis ; GTP Phosphohydrolases - metabolism ; hepatocyte ; Hepatocytes - metabolism ; Hepatocytes - pathology ; liver ; liver metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; mitochondria ; Mitochondria - metabolism ; mitochondrial metabolism ; OPA1 ; prohibitins ; Repressor Proteins - deficiency ; Repressor Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2019-08, Vol.294 (34), p.12581-12598</ispartof><rights>2019 © 2019 Li et al.</rights><rights>2019 Li et al.</rights><rights>2019 Li et al. 2019 Li et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-305b0eff494ebb1e75bb1f19b9179cd10317b5502db3163e4789f2c7ded7470e3</citedby><cites>FETCH-LOGICAL-c513t-305b0eff494ebb1e75bb1f19b9179cd10317b5502db3163e4789f2c7ded7470e3</cites><orcidid>0000-0002-2005-1433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709633/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709633/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31285263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lingzi</creatorcontrib><creatorcontrib>Martin-Levilain, Juliette</creatorcontrib><creatorcontrib>Jiménez-Sánchez, Cecilia</creatorcontrib><creatorcontrib>Karaca, Melis</creatorcontrib><creatorcontrib>Foti, Michelangelo</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><creatorcontrib>Maechler, Pierre</creatorcontrib><title>In vivo stabilization of OPA1 in hepatocytes potentiates mitochondrial respiration and gluconeogenesis in a prohibitin-dependent way</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Patients with fatty liver diseases present altered mitochondrial morphology and impaired metabolic function. Mitochondrial dynamics and related cell function require the uncleaved form of the dynamin-like GTPase OPA1. Stabilization of OPA1 might then confer a protective mechanism against stress-induced tissue damages. To study the putative role of hepatic mitochondrial morphology in a sick liver, we expressed a cleavage-resistant long form of OPA1 (L-OPA1Δ) in the liver of a mouse model with mitochondrial liver dysfunction (i.e. the hepatocyte-specific prohibitin-2 knockout (Hep-Phb2−/−) mice). Liver prohibitin-2 deficiency caused excessive proteolytic cleavage of L-OPA1, mitochondrial fragmentation, and increased apoptosis. These molecular alterations were associated with lipid accumulation, abolished gluconeogenesis, and extensive liver damage. Such liver dysfunction was associated with severe hypoglycemia. In prohibitin-2 knockout mice, expression of L-OPA1Δ by in vivo adenovirus delivery restored the morphology but not the function of mitochondria in hepatocytes. In prohibitin-competent mice, elongation of liver mitochondria by expression of L-OPA1Δ resulted in excessive glucose production associated with increased mitochondrial respiration. In conclusion, mitochondrial dynamics participates in the control of hepatic glucose production.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Cell Respiration</subject><subject>Editors' Picks</subject><subject>Gluconeogenesis</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>hepatocyte</subject><subject>Hepatocytes - metabolism</subject><subject>Hepatocytes - pathology</subject><subject>liver</subject><subject>liver metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial metabolism</subject><subject>OPA1</subject><subject>prohibitins</subject><subject>Repressor Proteins - deficiency</subject><subject>Repressor Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1vEzEQxS0EoqFw54R85LLBs96PmANSVPFRqVIRAomb5bVnk6k29mJvgsK5f3gdtlRwwAd7ZL_3G9uPsZcgliDa6s1NZ5df1gBqKUTbCHjEFiBWspA1fH_MFkKUUKiyXp2xZyndiDwqBU_ZmYRyVZeNXLDbS88PdAg8TaajgX6ZiYLnoefXn9fAyfMtjmYK9jhh4mOY0E9kTvWO8u42eBfJDDxiGinOZuMd3wx7GzyGDXpMlE4gw8cYttTRRL5wOKJ3GcZ_muNz9qQ3Q8IX9-s5-_bh_deLT8XV9cfLi_VVYWuQUyFF3Qns-0pV2HWAbZ3nHlSnoFXWgZDQdnUtStdJaCRW7Ur1pW0durZqBcpz9m7mjvtuh87m9tEMeoy0M_GogyH974mnrd6Eg25aoRopM-D1PSCGH3tMk95RsjgMJj91n3RZ1lUNQlVVlopZamNIKWL_0AaEPoWnc3j6d3h6Di9bXv19vQfDn7Sy4O0swPxJB8KokyX0Fh1FtJN2gf5PvwMnZK2x</recordid><startdate>20190823</startdate><enddate>20190823</enddate><creator>Li, Lingzi</creator><creator>Martin-Levilain, Juliette</creator><creator>Jiménez-Sánchez, Cecilia</creator><creator>Karaca, Melis</creator><creator>Foti, Michelangelo</creator><creator>Martinou, Jean-Claude</creator><creator>Maechler, Pierre</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2005-1433</orcidid></search><sort><creationdate>20190823</creationdate><title>In vivo stabilization of OPA1 in hepatocytes potentiates mitochondrial respiration and gluconeogenesis in a prohibitin-dependent way</title><author>Li, Lingzi ; Martin-Levilain, Juliette ; Jiménez-Sánchez, Cecilia ; Karaca, Melis ; Foti, Michelangelo ; Martinou, Jean-Claude ; Maechler, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-305b0eff494ebb1e75bb1f19b9179cd10317b5502db3163e4789f2c7ded7470e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Cell Respiration</topic><topic>Editors' Picks</topic><topic>Gluconeogenesis</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>hepatocyte</topic><topic>Hepatocytes - metabolism</topic><topic>Hepatocytes - pathology</topic><topic>liver</topic><topic>liver metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial metabolism</topic><topic>OPA1</topic><topic>prohibitins</topic><topic>Repressor Proteins - deficiency</topic><topic>Repressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lingzi</creatorcontrib><creatorcontrib>Martin-Levilain, Juliette</creatorcontrib><creatorcontrib>Jiménez-Sánchez, Cecilia</creatorcontrib><creatorcontrib>Karaca, Melis</creatorcontrib><creatorcontrib>Foti, Michelangelo</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><creatorcontrib>Maechler, Pierre</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lingzi</au><au>Martin-Levilain, Juliette</au><au>Jiménez-Sánchez, Cecilia</au><au>Karaca, Melis</au><au>Foti, Michelangelo</au><au>Martinou, Jean-Claude</au><au>Maechler, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo stabilization of OPA1 in hepatocytes potentiates mitochondrial respiration and gluconeogenesis in a prohibitin-dependent way</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-08-23</date><risdate>2019</risdate><volume>294</volume><issue>34</issue><spage>12581</spage><epage>12598</epage><pages>12581-12598</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Patients with fatty liver diseases present altered mitochondrial morphology and impaired metabolic function. Mitochondrial dynamics and related cell function require the uncleaved form of the dynamin-like GTPase OPA1. Stabilization of OPA1 might then confer a protective mechanism against stress-induced tissue damages. To study the putative role of hepatic mitochondrial morphology in a sick liver, we expressed a cleavage-resistant long form of OPA1 (L-OPA1Δ) in the liver of a mouse model with mitochondrial liver dysfunction (i.e. the hepatocyte-specific prohibitin-2 knockout (Hep-Phb2−/−) mice). Liver prohibitin-2 deficiency caused excessive proteolytic cleavage of L-OPA1, mitochondrial fragmentation, and increased apoptosis. These molecular alterations were associated with lipid accumulation, abolished gluconeogenesis, and extensive liver damage. Such liver dysfunction was associated with severe hypoglycemia. In prohibitin-2 knockout mice, expression of L-OPA1Δ by in vivo adenovirus delivery restored the morphology but not the function of mitochondria in hepatocytes. In prohibitin-competent mice, elongation of liver mitochondria by expression of L-OPA1Δ resulted in excessive glucose production associated with increased mitochondrial respiration. In conclusion, mitochondrial dynamics participates in the control of hepatic glucose production.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31285263</pmid><doi>10.1074/jbc.RA119.007601</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2005-1433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2019-08, Vol.294 (34), p.12581-12598
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6709633
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Apoptosis
Cell Respiration
Editors' Picks
Gluconeogenesis
GTP Phosphohydrolases - metabolism
hepatocyte
Hepatocytes - metabolism
Hepatocytes - pathology
liver
liver metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
mitochondria
Mitochondria - metabolism
mitochondrial metabolism
OPA1
prohibitins
Repressor Proteins - deficiency
Repressor Proteins - metabolism
title In vivo stabilization of OPA1 in hepatocytes potentiates mitochondrial respiration and gluconeogenesis in a prohibitin-dependent way
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20stabilization%20of%20OPA1%20in%20hepatocytes%20potentiates%20mitochondrial%20respiration%20and%20gluconeogenesis%20in%20a%20prohibitin-dependent%20way&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Li,%20Lingzi&rft.date=2019-08-23&rft.volume=294&rft.issue=34&rft.spage=12581&rft.epage=12598&rft.pages=12581-12598&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.007601&rft_dat=%3Cproquest_pubme%3E2254510944%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254510944&rft_id=info:pmid/31285263&rft_els_id=S0021925820302945&rfr_iscdi=true