Structural basis for gating pore current in periodic paralysis

Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness 1 , 2 . They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the volta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2018-05, Vol.557 (7706), p.590-594
Hauptverfasser: Jiang, Daohua, Gamal El-Din, Tamer M., Ing, Christopher, Lu, Peilong, Pomès, Régis, Zheng, Ning, Catterall, William A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 594
container_issue 7706
container_start_page 590
container_title Nature (London)
container_volume 557
creator Jiang, Daohua
Gamal El-Din, Tamer M.
Ing, Christopher
Lu, Peilong
Pomès, Régis
Zheng, Ning
Catterall, William A.
description Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness 1 , 2 . They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Na v 1.4 or the calcium channel Ca v 1.1 1 , 2 . Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis 1 , 2 by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state 3 , 4 . Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis 5 owing to cation leak in both activated and inactivated states 6 . Here we present high-resolution structures of the model bacterial sodium channel Na v Ab with the analogous gating-charge mutations 7 , 8 , which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of Na v Ab(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na + permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis. Crystal structures and molecular dynamics simulations of voltage-gated sodium channels containing mutations that cause hypokalaemic and normokalaemic periodic paralysis indicate the pathogenic mechanisms of these conditions and suggest a target for the design of potential therapeutic and symptomatic drugs.
doi_str_mv 10.1038/s41586-018-0120-4
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572639073</galeid><sourcerecordid>A572639073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c705t-cf72fdc6d49f76877953387240ddab5a6c941f8b9fa3a26e0031e0b6fa524cbe3</originalsourceid><addsrcrecordid>eNp1kl1rFDEUhoModlv9Ad7IoDeKTE0y-Zi5KSyLH4WiYCtehkwmGVNmk2kyI_bf9yxb265sCSGQ85w3bzgvQq8IPia4qj9mRngtSkxq2BSX7AlaECZFyUQtn6IFxhQqdSUO0GHOlxhjTiR7jg5oI0UjKVugk_MpzWaakx6KVmefCxdT0evJh74YY7KFmVOyYSp8KEabfOy8KUYN_DXQL9Azp4dsX96eR-jn508Xq6_l2fcvp6vlWWkk5lNpnKSuM6JjjZPgTTa8qmowgLtOt1wL0zDi6rZxutJUWIwrYnErnOaUmdZWR-hkqzvO7dp2BgyBAzUmv9bpWkXt1W4l-N-qj3-UkLgWhILAu1uBFK9mmye19tnYYdDBxjkrihmWAkxVgL79D72McwrwPaAEYQ1nnN9TvR6s8sFFeNdsRNWSSyqqBsuNVrmH6m2wYDIG6zxc7_Bv9vBm9FfqIXS8B4LV2bU3e1Xf7zQAM9m_U6_nnNXp-Y9d9sPj7PLi1-rbLk22tEkx52Td3UgIVpuMqm1GFWRUbTKqGPS8fjjLu45_oQSAboEMpdDbdD-Ax1VvADXl7RY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061495455</pqid></control><display><type>article</type><title>Structural basis for gating pore current in periodic paralysis</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jiang, Daohua ; Gamal El-Din, Tamer M. ; Ing, Christopher ; Lu, Peilong ; Pomès, Régis ; Zheng, Ning ; Catterall, William A.</creator><creatorcontrib>Jiang, Daohua ; Gamal El-Din, Tamer M. ; Ing, Christopher ; Lu, Peilong ; Pomès, Régis ; Zheng, Ning ; Catterall, William A.</creatorcontrib><description>Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness 1 , 2 . They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Na v 1.4 or the calcium channel Ca v 1.1 1 , 2 . Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis 1 , 2 by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state 3 , 4 . Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis 5 owing to cation leak in both activated and inactivated states 6 . Here we present high-resolution structures of the model bacterial sodium channel Na v Ab with the analogous gating-charge mutations 7 , 8 , which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of Na v Ab(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na + permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis. Crystal structures and molecular dynamics simulations of voltage-gated sodium channels containing mutations that cause hypokalaemic and normokalaemic periodic paralysis indicate the pathogenic mechanisms of these conditions and suggest a target for the design of potential therapeutic and symptomatic drugs.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0120-4</identifier><identifier>PMID: 29769724</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 631/535/1266 ; 82/16 ; 9/74 ; Binding Sites ; Calcium ; Calcium channels ; Calcium channels (voltage-gated) ; Cations ; Causes of ; Channel gating ; Computer simulation ; Crystal structure ; Electric Conductivity ; Electric potential ; Familial periodic paralysis ; Gene mutation ; Genetic aspects ; Guanidine - metabolism ; Health aspects ; Humanities and Social Sciences ; Humans ; Hydrophobicity ; Hypokalemic Periodic Paralysis - genetics ; Hypokalemic Periodic Paralysis - metabolism ; Ion Channel Gating - genetics ; Ions ; Letter ; Molecular chains ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular modelling ; multidisciplinary ; Muscles ; Mutation ; NAV1.4 Voltage-Gated Sodium Channel - chemistry ; NAV1.4 Voltage-Gated Sodium Channel - genetics ; NAV1.4 Voltage-Gated Sodium Channel - metabolism ; Observations ; Paralyses, Familial Periodic - genetics ; Paralyses, Familial Periodic - metabolism ; Paralysis ; Potassium ; Resveratrol ; Science ; Science (multidisciplinary) ; Skeletal muscle ; Sodium ; Sodium - metabolism ; Sodium channels ; Sodium channels (voltage-gated) ; Thermodynamics ; Variation</subject><ispartof>Nature (London), 2018-05, Vol.557 (7706), p.590-594</ispartof><rights>Macmillan Publishers Ltd., part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 24, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c705t-cf72fdc6d49f76877953387240ddab5a6c941f8b9fa3a26e0031e0b6fa524cbe3</citedby><cites>FETCH-LOGICAL-c705t-cf72fdc6d49f76877953387240ddab5a6c941f8b9fa3a26e0031e0b6fa524cbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0120-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0120-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29769724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Daohua</creatorcontrib><creatorcontrib>Gamal El-Din, Tamer M.</creatorcontrib><creatorcontrib>Ing, Christopher</creatorcontrib><creatorcontrib>Lu, Peilong</creatorcontrib><creatorcontrib>Pomès, Régis</creatorcontrib><creatorcontrib>Zheng, Ning</creatorcontrib><creatorcontrib>Catterall, William A.</creatorcontrib><title>Structural basis for gating pore current in periodic paralysis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness 1 , 2 . They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Na v 1.4 or the calcium channel Ca v 1.1 1 , 2 . Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis 1 , 2 by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state 3 , 4 . Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis 5 owing to cation leak in both activated and inactivated states 6 . Here we present high-resolution structures of the model bacterial sodium channel Na v Ab with the analogous gating-charge mutations 7 , 8 , which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of Na v Ab(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na + permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis. Crystal structures and molecular dynamics simulations of voltage-gated sodium channels containing mutations that cause hypokalaemic and normokalaemic periodic paralysis indicate the pathogenic mechanisms of these conditions and suggest a target for the design of potential therapeutic and symptomatic drugs.</description><subject>631/378</subject><subject>631/535/1266</subject><subject>82/16</subject><subject>9/74</subject><subject>Binding Sites</subject><subject>Calcium</subject><subject>Calcium channels</subject><subject>Calcium channels (voltage-gated)</subject><subject>Cations</subject><subject>Causes of</subject><subject>Channel gating</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Electric Conductivity</subject><subject>Electric potential</subject><subject>Familial periodic paralysis</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>Guanidine - metabolism</subject><subject>Health aspects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>Hypokalemic Periodic Paralysis - genetics</subject><subject>Hypokalemic Periodic Paralysis - metabolism</subject><subject>Ion Channel Gating - genetics</subject><subject>Ions</subject><subject>Letter</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Muscles</subject><subject>Mutation</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - chemistry</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - metabolism</subject><subject>Observations</subject><subject>Paralyses, Familial Periodic - genetics</subject><subject>Paralyses, Familial Periodic - metabolism</subject><subject>Paralysis</subject><subject>Potassium</subject><subject>Resveratrol</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skeletal muscle</subject><subject>Sodium</subject><subject>Sodium - metabolism</subject><subject>Sodium channels</subject><subject>Sodium channels (voltage-gated)</subject><subject>Thermodynamics</subject><subject>Variation</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kl1rFDEUhoModlv9Ad7IoDeKTE0y-Zi5KSyLH4WiYCtehkwmGVNmk2kyI_bf9yxb265sCSGQ85w3bzgvQq8IPia4qj9mRngtSkxq2BSX7AlaECZFyUQtn6IFxhQqdSUO0GHOlxhjTiR7jg5oI0UjKVugk_MpzWaakx6KVmefCxdT0evJh74YY7KFmVOyYSp8KEabfOy8KUYN_DXQL9Azp4dsX96eR-jn508Xq6_l2fcvp6vlWWkk5lNpnKSuM6JjjZPgTTa8qmowgLtOt1wL0zDi6rZxutJUWIwrYnErnOaUmdZWR-hkqzvO7dp2BgyBAzUmv9bpWkXt1W4l-N-qj3-UkLgWhILAu1uBFK9mmye19tnYYdDBxjkrihmWAkxVgL79D72McwrwPaAEYQ1nnN9TvR6s8sFFeNdsRNWSSyqqBsuNVrmH6m2wYDIG6zxc7_Bv9vBm9FfqIXS8B4LV2bU3e1Xf7zQAM9m_U6_nnNXp-Y9d9sPj7PLi1-rbLk22tEkx52Td3UgIVpuMqm1GFWRUbTKqGPS8fjjLu45_oQSAboEMpdDbdD-Ax1VvADXl7RY</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Jiang, Daohua</creator><creator>Gamal El-Din, Tamer M.</creator><creator>Ing, Christopher</creator><creator>Lu, Peilong</creator><creator>Pomès, Régis</creator><creator>Zheng, Ning</creator><creator>Catterall, William A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180501</creationdate><title>Structural basis for gating pore current in periodic paralysis</title><author>Jiang, Daohua ; Gamal El-Din, Tamer M. ; Ing, Christopher ; Lu, Peilong ; Pomès, Régis ; Zheng, Ning ; Catterall, William A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c705t-cf72fdc6d49f76877953387240ddab5a6c941f8b9fa3a26e0031e0b6fa524cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378</topic><topic>631/535/1266</topic><topic>82/16</topic><topic>9/74</topic><topic>Binding Sites</topic><topic>Calcium</topic><topic>Calcium channels</topic><topic>Calcium channels (voltage-gated)</topic><topic>Cations</topic><topic>Causes of</topic><topic>Channel gating</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Electric Conductivity</topic><topic>Electric potential</topic><topic>Familial periodic paralysis</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>Guanidine - metabolism</topic><topic>Health aspects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>Hypokalemic Periodic Paralysis - genetics</topic><topic>Hypokalemic Periodic Paralysis - metabolism</topic><topic>Ion Channel Gating - genetics</topic><topic>Ions</topic><topic>Letter</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Muscles</topic><topic>Mutation</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - chemistry</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - metabolism</topic><topic>Observations</topic><topic>Paralyses, Familial Periodic - genetics</topic><topic>Paralyses, Familial Periodic - metabolism</topic><topic>Paralysis</topic><topic>Potassium</topic><topic>Resveratrol</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skeletal muscle</topic><topic>Sodium</topic><topic>Sodium - metabolism</topic><topic>Sodium channels</topic><topic>Sodium channels (voltage-gated)</topic><topic>Thermodynamics</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Daohua</creatorcontrib><creatorcontrib>Gamal El-Din, Tamer M.</creatorcontrib><creatorcontrib>Ing, Christopher</creatorcontrib><creatorcontrib>Lu, Peilong</creatorcontrib><creatorcontrib>Pomès, Régis</creatorcontrib><creatorcontrib>Zheng, Ning</creatorcontrib><creatorcontrib>Catterall, William A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Daohua</au><au>Gamal El-Din, Tamer M.</au><au>Ing, Christopher</au><au>Lu, Peilong</au><au>Pomès, Régis</au><au>Zheng, Ning</au><au>Catterall, William A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for gating pore current in periodic paralysis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>557</volume><issue>7706</issue><spage>590</spage><epage>594</epage><pages>590-594</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness 1 , 2 . They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Na v 1.4 or the calcium channel Ca v 1.1 1 , 2 . Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis 1 , 2 by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state 3 , 4 . Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis 5 owing to cation leak in both activated and inactivated states 6 . Here we present high-resolution structures of the model bacterial sodium channel Na v Ab with the analogous gating-charge mutations 7 , 8 , which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of Na v Ab(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na + permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis. Crystal structures and molecular dynamics simulations of voltage-gated sodium channels containing mutations that cause hypokalaemic and normokalaemic periodic paralysis indicate the pathogenic mechanisms of these conditions and suggest a target for the design of potential therapeutic and symptomatic drugs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29769724</pmid><doi>10.1038/s41586-018-0120-4</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2018-05, Vol.557 (7706), p.590-594
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708612
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/378
631/535/1266
82/16
9/74
Binding Sites
Calcium
Calcium channels
Calcium channels (voltage-gated)
Cations
Causes of
Channel gating
Computer simulation
Crystal structure
Electric Conductivity
Electric potential
Familial periodic paralysis
Gene mutation
Genetic aspects
Guanidine - metabolism
Health aspects
Humanities and Social Sciences
Humans
Hydrophobicity
Hypokalemic Periodic Paralysis - genetics
Hypokalemic Periodic Paralysis - metabolism
Ion Channel Gating - genetics
Ions
Letter
Molecular chains
Molecular dynamics
Molecular Dynamics Simulation
Molecular modelling
multidisciplinary
Muscles
Mutation
NAV1.4 Voltage-Gated Sodium Channel - chemistry
NAV1.4 Voltage-Gated Sodium Channel - genetics
NAV1.4 Voltage-Gated Sodium Channel - metabolism
Observations
Paralyses, Familial Periodic - genetics
Paralyses, Familial Periodic - metabolism
Paralysis
Potassium
Resveratrol
Science
Science (multidisciplinary)
Skeletal muscle
Sodium
Sodium - metabolism
Sodium channels
Sodium channels (voltage-gated)
Thermodynamics
Variation
title Structural basis for gating pore current in periodic paralysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20gating%20pore%20current%20in%20periodic%20paralysis&rft.jtitle=Nature%20(London)&rft.au=Jiang,%20Daohua&rft.date=2018-05-01&rft.volume=557&rft.issue=7706&rft.spage=590&rft.epage=594&rft.pages=590-594&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0120-4&rft_dat=%3Cgale_pubme%3EA572639073%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061495455&rft_id=info:pmid/29769724&rft_galeid=A572639073&rfr_iscdi=true