Structural basis for gating pore current in periodic paralysis
Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness 1 , 2 . They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the volta...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-05, Vol.557 (7706), p.590-594 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 594 |
---|---|
container_issue | 7706 |
container_start_page | 590 |
container_title | Nature (London) |
container_volume | 557 |
creator | Jiang, Daohua Gamal El-Din, Tamer M. Ing, Christopher Lu, Peilong Pomès, Régis Zheng, Ning Catterall, William A. |
description | Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness
1
,
2
. They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Na
v
1.4 or the calcium channel Ca
v
1.1
1
,
2
. Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis
1
,
2
by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state
3
,
4
. Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis
5
owing to cation leak in both activated and inactivated states
6
. Here we present high-resolution structures of the model bacterial sodium channel Na
v
Ab with the analogous gating-charge mutations
7
,
8
, which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of Na
v
Ab(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na
+
permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis.
Crystal structures and molecular dynamics simulations of voltage-gated sodium channels containing mutations that cause hypokalaemic and normokalaemic periodic paralysis indicate the pathogenic mechanisms of these conditions and suggest a target for the design of potential therapeutic and symptomatic drugs. |
doi_str_mv | 10.1038/s41586-018-0120-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572639073</galeid><sourcerecordid>A572639073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c705t-cf72fdc6d49f76877953387240ddab5a6c941f8b9fa3a26e0031e0b6fa524cbe3</originalsourceid><addsrcrecordid>eNp1kl1rFDEUhoModlv9Ad7IoDeKTE0y-Zi5KSyLH4WiYCtehkwmGVNmk2kyI_bf9yxb265sCSGQ85w3bzgvQq8IPia4qj9mRngtSkxq2BSX7AlaECZFyUQtn6IFxhQqdSUO0GHOlxhjTiR7jg5oI0UjKVugk_MpzWaakx6KVmefCxdT0evJh74YY7KFmVOyYSp8KEabfOy8KUYN_DXQL9Azp4dsX96eR-jn508Xq6_l2fcvp6vlWWkk5lNpnKSuM6JjjZPgTTa8qmowgLtOt1wL0zDi6rZxutJUWIwrYnErnOaUmdZWR-hkqzvO7dp2BgyBAzUmv9bpWkXt1W4l-N-qj3-UkLgWhILAu1uBFK9mmye19tnYYdDBxjkrihmWAkxVgL79D72McwrwPaAEYQ1nnN9TvR6s8sFFeNdsRNWSSyqqBsuNVrmH6m2wYDIG6zxc7_Bv9vBm9FfqIXS8B4LV2bU3e1Xf7zQAM9m_U6_nnNXp-Y9d9sPj7PLi1-rbLk22tEkx52Td3UgIVpuMqm1GFWRUbTKqGPS8fjjLu45_oQSAboEMpdDbdD-Ax1VvADXl7RY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061495455</pqid></control><display><type>article</type><title>Structural basis for gating pore current in periodic paralysis</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jiang, Daohua ; Gamal El-Din, Tamer M. ; Ing, Christopher ; Lu, Peilong ; Pomès, Régis ; Zheng, Ning ; Catterall, William A.</creator><creatorcontrib>Jiang, Daohua ; Gamal El-Din, Tamer M. ; Ing, Christopher ; Lu, Peilong ; Pomès, Régis ; Zheng, Ning ; Catterall, William A.</creatorcontrib><description>Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness
1
,
2
. They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Na
v
1.4 or the calcium channel Ca
v
1.1
1
,
2
. Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis
1
,
2
by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state
3
,
4
. Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis
5
owing to cation leak in both activated and inactivated states
6
. Here we present high-resolution structures of the model bacterial sodium channel Na
v
Ab with the analogous gating-charge mutations
7
,
8
, which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of Na
v
Ab(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na
+
permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis.
Crystal structures and molecular dynamics simulations of voltage-gated sodium channels containing mutations that cause hypokalaemic and normokalaemic periodic paralysis indicate the pathogenic mechanisms of these conditions and suggest a target for the design of potential therapeutic and symptomatic drugs.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0120-4</identifier><identifier>PMID: 29769724</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 631/535/1266 ; 82/16 ; 9/74 ; Binding Sites ; Calcium ; Calcium channels ; Calcium channels (voltage-gated) ; Cations ; Causes of ; Channel gating ; Computer simulation ; Crystal structure ; Electric Conductivity ; Electric potential ; Familial periodic paralysis ; Gene mutation ; Genetic aspects ; Guanidine - metabolism ; Health aspects ; Humanities and Social Sciences ; Humans ; Hydrophobicity ; Hypokalemic Periodic Paralysis - genetics ; Hypokalemic Periodic Paralysis - metabolism ; Ion Channel Gating - genetics ; Ions ; Letter ; Molecular chains ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular modelling ; multidisciplinary ; Muscles ; Mutation ; NAV1.4 Voltage-Gated Sodium Channel - chemistry ; NAV1.4 Voltage-Gated Sodium Channel - genetics ; NAV1.4 Voltage-Gated Sodium Channel - metabolism ; Observations ; Paralyses, Familial Periodic - genetics ; Paralyses, Familial Periodic - metabolism ; Paralysis ; Potassium ; Resveratrol ; Science ; Science (multidisciplinary) ; Skeletal muscle ; Sodium ; Sodium - metabolism ; Sodium channels ; Sodium channels (voltage-gated) ; Thermodynamics ; Variation</subject><ispartof>Nature (London), 2018-05, Vol.557 (7706), p.590-594</ispartof><rights>Macmillan Publishers Ltd., part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 24, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c705t-cf72fdc6d49f76877953387240ddab5a6c941f8b9fa3a26e0031e0b6fa524cbe3</citedby><cites>FETCH-LOGICAL-c705t-cf72fdc6d49f76877953387240ddab5a6c941f8b9fa3a26e0031e0b6fa524cbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0120-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0120-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29769724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Daohua</creatorcontrib><creatorcontrib>Gamal El-Din, Tamer M.</creatorcontrib><creatorcontrib>Ing, Christopher</creatorcontrib><creatorcontrib>Lu, Peilong</creatorcontrib><creatorcontrib>Pomès, Régis</creatorcontrib><creatorcontrib>Zheng, Ning</creatorcontrib><creatorcontrib>Catterall, William A.</creatorcontrib><title>Structural basis for gating pore current in periodic paralysis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness
1
,
2
. They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Na
v
1.4 or the calcium channel Ca
v
1.1
1
,
2
. Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis
1
,
2
by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state
3
,
4
. Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis
5
owing to cation leak in both activated and inactivated states
6
. Here we present high-resolution structures of the model bacterial sodium channel Na
v
Ab with the analogous gating-charge mutations
7
,
8
, which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of Na
v
Ab(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na
+
permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis.
Crystal structures and molecular dynamics simulations of voltage-gated sodium channels containing mutations that cause hypokalaemic and normokalaemic periodic paralysis indicate the pathogenic mechanisms of these conditions and suggest a target for the design of potential therapeutic and symptomatic drugs.</description><subject>631/378</subject><subject>631/535/1266</subject><subject>82/16</subject><subject>9/74</subject><subject>Binding Sites</subject><subject>Calcium</subject><subject>Calcium channels</subject><subject>Calcium channels (voltage-gated)</subject><subject>Cations</subject><subject>Causes of</subject><subject>Channel gating</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Electric Conductivity</subject><subject>Electric potential</subject><subject>Familial periodic paralysis</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>Guanidine - metabolism</subject><subject>Health aspects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>Hypokalemic Periodic Paralysis - genetics</subject><subject>Hypokalemic Periodic Paralysis - metabolism</subject><subject>Ion Channel Gating - genetics</subject><subject>Ions</subject><subject>Letter</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Muscles</subject><subject>Mutation</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - chemistry</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.4 Voltage-Gated Sodium Channel - metabolism</subject><subject>Observations</subject><subject>Paralyses, Familial Periodic - genetics</subject><subject>Paralyses, Familial Periodic - metabolism</subject><subject>Paralysis</subject><subject>Potassium</subject><subject>Resveratrol</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skeletal muscle</subject><subject>Sodium</subject><subject>Sodium - metabolism</subject><subject>Sodium channels</subject><subject>Sodium channels (voltage-gated)</subject><subject>Thermodynamics</subject><subject>Variation</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kl1rFDEUhoModlv9Ad7IoDeKTE0y-Zi5KSyLH4WiYCtehkwmGVNmk2kyI_bf9yxb265sCSGQ85w3bzgvQq8IPia4qj9mRngtSkxq2BSX7AlaECZFyUQtn6IFxhQqdSUO0GHOlxhjTiR7jg5oI0UjKVugk_MpzWaakx6KVmefCxdT0evJh74YY7KFmVOyYSp8KEabfOy8KUYN_DXQL9Azp4dsX96eR-jn508Xq6_l2fcvp6vlWWkk5lNpnKSuM6JjjZPgTTa8qmowgLtOt1wL0zDi6rZxutJUWIwrYnErnOaUmdZWR-hkqzvO7dp2BgyBAzUmv9bpWkXt1W4l-N-qj3-UkLgWhILAu1uBFK9mmye19tnYYdDBxjkrihmWAkxVgL79D72McwrwPaAEYQ1nnN9TvR6s8sFFeNdsRNWSSyqqBsuNVrmH6m2wYDIG6zxc7_Bv9vBm9FfqIXS8B4LV2bU3e1Xf7zQAM9m_U6_nnNXp-Y9d9sPj7PLi1-rbLk22tEkx52Td3UgIVpuMqm1GFWRUbTKqGPS8fjjLu45_oQSAboEMpdDbdD-Ax1VvADXl7RY</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Jiang, Daohua</creator><creator>Gamal El-Din, Tamer M.</creator><creator>Ing, Christopher</creator><creator>Lu, Peilong</creator><creator>Pomès, Régis</creator><creator>Zheng, Ning</creator><creator>Catterall, William A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180501</creationdate><title>Structural basis for gating pore current in periodic paralysis</title><author>Jiang, Daohua ; Gamal El-Din, Tamer M. ; Ing, Christopher ; Lu, Peilong ; Pomès, Régis ; Zheng, Ning ; Catterall, William A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c705t-cf72fdc6d49f76877953387240ddab5a6c941f8b9fa3a26e0031e0b6fa524cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378</topic><topic>631/535/1266</topic><topic>82/16</topic><topic>9/74</topic><topic>Binding Sites</topic><topic>Calcium</topic><topic>Calcium channels</topic><topic>Calcium channels (voltage-gated)</topic><topic>Cations</topic><topic>Causes of</topic><topic>Channel gating</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Electric Conductivity</topic><topic>Electric potential</topic><topic>Familial periodic paralysis</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>Guanidine - metabolism</topic><topic>Health aspects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>Hypokalemic Periodic Paralysis - genetics</topic><topic>Hypokalemic Periodic Paralysis - metabolism</topic><topic>Ion Channel Gating - genetics</topic><topic>Ions</topic><topic>Letter</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Muscles</topic><topic>Mutation</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - chemistry</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.4 Voltage-Gated Sodium Channel - metabolism</topic><topic>Observations</topic><topic>Paralyses, Familial Periodic - genetics</topic><topic>Paralyses, Familial Periodic - metabolism</topic><topic>Paralysis</topic><topic>Potassium</topic><topic>Resveratrol</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skeletal muscle</topic><topic>Sodium</topic><topic>Sodium - metabolism</topic><topic>Sodium channels</topic><topic>Sodium channels (voltage-gated)</topic><topic>Thermodynamics</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Daohua</creatorcontrib><creatorcontrib>Gamal El-Din, Tamer M.</creatorcontrib><creatorcontrib>Ing, Christopher</creatorcontrib><creatorcontrib>Lu, Peilong</creatorcontrib><creatorcontrib>Pomès, Régis</creatorcontrib><creatorcontrib>Zheng, Ning</creatorcontrib><creatorcontrib>Catterall, William A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Daohua</au><au>Gamal El-Din, Tamer M.</au><au>Ing, Christopher</au><au>Lu, Peilong</au><au>Pomès, Régis</au><au>Zheng, Ning</au><au>Catterall, William A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for gating pore current in periodic paralysis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>557</volume><issue>7706</issue><spage>590</spage><epage>594</epage><pages>590-594</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness
1
,
2
. They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Na
v
1.4 or the calcium channel Ca
v
1.1
1
,
2
. Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis
1
,
2
by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state
3
,
4
. Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis
5
owing to cation leak in both activated and inactivated states
6
. Here we present high-resolution structures of the model bacterial sodium channel Na
v
Ab with the analogous gating-charge mutations
7
,
8
, which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of Na
v
Ab(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na
+
permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis.
Crystal structures and molecular dynamics simulations of voltage-gated sodium channels containing mutations that cause hypokalaemic and normokalaemic periodic paralysis indicate the pathogenic mechanisms of these conditions and suggest a target for the design of potential therapeutic and symptomatic drugs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29769724</pmid><doi>10.1038/s41586-018-0120-4</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-05, Vol.557 (7706), p.590-594 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708612 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/378 631/535/1266 82/16 9/74 Binding Sites Calcium Calcium channels Calcium channels (voltage-gated) Cations Causes of Channel gating Computer simulation Crystal structure Electric Conductivity Electric potential Familial periodic paralysis Gene mutation Genetic aspects Guanidine - metabolism Health aspects Humanities and Social Sciences Humans Hydrophobicity Hypokalemic Periodic Paralysis - genetics Hypokalemic Periodic Paralysis - metabolism Ion Channel Gating - genetics Ions Letter Molecular chains Molecular dynamics Molecular Dynamics Simulation Molecular modelling multidisciplinary Muscles Mutation NAV1.4 Voltage-Gated Sodium Channel - chemistry NAV1.4 Voltage-Gated Sodium Channel - genetics NAV1.4 Voltage-Gated Sodium Channel - metabolism Observations Paralyses, Familial Periodic - genetics Paralyses, Familial Periodic - metabolism Paralysis Potassium Resveratrol Science Science (multidisciplinary) Skeletal muscle Sodium Sodium - metabolism Sodium channels Sodium channels (voltage-gated) Thermodynamics Variation |
title | Structural basis for gating pore current in periodic paralysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20gating%20pore%20current%20in%20periodic%20paralysis&rft.jtitle=Nature%20(London)&rft.au=Jiang,%20Daohua&rft.date=2018-05-01&rft.volume=557&rft.issue=7706&rft.spage=590&rft.epage=594&rft.pages=590-594&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0120-4&rft_dat=%3Cgale_pubme%3EA572639073%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061495455&rft_id=info:pmid/29769724&rft_galeid=A572639073&rfr_iscdi=true |