Modelling pathogen load dynamics to elucidate mechanistic determinants of host–Plasmodium falciparum interactions
During infection, increasing pathogen load stimulates both protective and harmful aspects of the host response. The dynamics of this interaction are hard to quantify in humans, but doing so could improve understanding of the mechanisms of disease and protection. We sought to model the contributions...
Gespeichert in:
Veröffentlicht in: | Nature microbiology 2019-09, Vol.4 (9), p.1592-1602 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1602 |
---|---|
container_issue | 9 |
container_start_page | 1592 |
container_title | Nature microbiology |
container_volume | 4 |
creator | Georgiadou, Athina Lee, Hyun Jae Walther, Michael van Beek, Anna E. Fitriani, Fadlila Wouters, Diana Kuijpers, Taco W. Nwakanma, Davis D’Alessandro, Umberto Riley, Eleanor M. Otto, Thomas D. Ghani, Azra Levin, Michael Coin, Lachlan J. Conway, David J. Bretscher, Michael T. Cunnington, Aubrey J. |
description | During infection, increasing pathogen load stimulates both protective and harmful aspects of the host response. The dynamics of this interaction are hard to quantify in humans, but doing so could improve understanding of the mechanisms of disease and protection. We sought to model the contributions of the parasite multiplication rate and host response to observed parasite load in individual subjects infected with
Plasmodium falciparum
malaria, using only data obtained at the time of clinical presentation, and then to identify their mechanistic correlates. We predicted higher parasite multiplication rates and lower host responsiveness in cases of severe malaria, with severe anaemia being more insidious than cerebral malaria. We predicted that parasite-growth inhibition was associated with platelet consumption, lower expression of
CXCL10
and type 1 interferon-associated genes, but increased cathepsin G and matrix metallopeptidase 9 expression. We found that cathepsin G and matrix metallopeptidase 9 directly inhibit parasite invasion into erythrocytes. The parasite multiplication rate was associated with host iron availability and higher complement factor H levels, lower expression of gametocyte-associated genes but higher expression of translation-associated genes in the parasite. Our findings demonstrate the potential of using explicit modelling of pathogen load dynamics to deepen understanding of host–pathogen interactions and identify mechanistic correlates of protection.
The use of a statistical prediction model to estimate the determinants of parasite load and host response dynamics in humans infected with the human malaria parasite
Plasmodium falciparum
identifies cathepsin G and matrix metallopeptidase 9 as host factors that can inhibit parasite invasion into red blood cells. |
doi_str_mv | 10.1038/s41564-019-0474-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277999553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-7c707fa04b94eade32b2448b203d18da8c7dd1d8e521f07169bcf0c4d197e45f3</originalsourceid><addsrcrecordid>eNp1kcFqFTEUhoMottQ-gBsJuB49yWQmk40gRa3QUhe6DpnkzL0pM8k1yUi78x18Q5-kKbetddHVOfB_5z8__IS8ZvCOQTu8z4J1vWiAqQaEFM3VM3LIoRuajsv--aP9gBznfAkArOd9P_QvyUHLOKgW5CHJ59HhPPuwoTtTtnGDgc7ROOqug1m8zbREivNqvTMF6YJ2a4LPxVvqsGBafDChZBonuo25_P3959ts8hKdXxc6mdn6nUl19aHCxhYfQ35FXlQl4_HdPCI_Pn_6fnLanF18-Xry8ayxQkJppJUgJwNiVAKNw5aPXIhh5NA6NjgzWOkccwN2nE0gWa9GO4EVjimJopvaI_Jh77tbxwWdxVCSmfUu-cWkax2N1_8rwW_1Jv7SvYRBtKoavL0zSPHnirnoy7imUDNrzqVUSnVdWym2p2yKOSecHj4w0LdV6X1Vulalb6vSV_XmzeNoDxf3xVSA74FcpbDB9O_10643pfSkig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277999553</pqid></control><display><type>article</type><title>Modelling pathogen load dynamics to elucidate mechanistic determinants of host–Plasmodium falciparum interactions</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Georgiadou, Athina ; Lee, Hyun Jae ; Walther, Michael ; van Beek, Anna E. ; Fitriani, Fadlila ; Wouters, Diana ; Kuijpers, Taco W. ; Nwakanma, Davis ; D’Alessandro, Umberto ; Riley, Eleanor M. ; Otto, Thomas D. ; Ghani, Azra ; Levin, Michael ; Coin, Lachlan J. ; Conway, David J. ; Bretscher, Michael T. ; Cunnington, Aubrey J.</creator><creatorcontrib>Georgiadou, Athina ; Lee, Hyun Jae ; Walther, Michael ; van Beek, Anna E. ; Fitriani, Fadlila ; Wouters, Diana ; Kuijpers, Taco W. ; Nwakanma, Davis ; D’Alessandro, Umberto ; Riley, Eleanor M. ; Otto, Thomas D. ; Ghani, Azra ; Levin, Michael ; Coin, Lachlan J. ; Conway, David J. ; Bretscher, Michael T. ; Cunnington, Aubrey J.</creatorcontrib><description>During infection, increasing pathogen load stimulates both protective and harmful aspects of the host response. The dynamics of this interaction are hard to quantify in humans, but doing so could improve understanding of the mechanisms of disease and protection. We sought to model the contributions of the parasite multiplication rate and host response to observed parasite load in individual subjects infected with
Plasmodium falciparum
malaria, using only data obtained at the time of clinical presentation, and then to identify their mechanistic correlates. We predicted higher parasite multiplication rates and lower host responsiveness in cases of severe malaria, with severe anaemia being more insidious than cerebral malaria. We predicted that parasite-growth inhibition was associated with platelet consumption, lower expression of
CXCL10
and type 1 interferon-associated genes, but increased cathepsin G and matrix metallopeptidase 9 expression. We found that cathepsin G and matrix metallopeptidase 9 directly inhibit parasite invasion into erythrocytes. The parasite multiplication rate was associated with host iron availability and higher complement factor H levels, lower expression of gametocyte-associated genes but higher expression of translation-associated genes in the parasite. Our findings demonstrate the potential of using explicit modelling of pathogen load dynamics to deepen understanding of host–pathogen interactions and identify mechanistic correlates of protection.
The use of a statistical prediction model to estimate the determinants of parasite load and host response dynamics in humans infected with the human malaria parasite
Plasmodium falciparum
identifies cathepsin G and matrix metallopeptidase 9 as host factors that can inhibit parasite invasion into red blood cells.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-019-0474-x</identifier><identifier>PMID: 31209307</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2397 ; 631/250/255/1629 ; 631/326/417/2546 ; Adolescent ; Biomedical and Life Sciences ; Blood Platelets - cytology ; Cathepsin G ; Cathepsin G - genetics ; Cathepsin G - pharmacology ; Child ; Child, Preschool ; Complement factor H ; CXCL10 protein ; Erythrocytes ; Erythrocytes - drug effects ; Erythrocytes - parasitology ; Female ; Gene Expression Profiling ; Host-Parasite Interactions ; Humans ; Infant ; Infectious Diseases ; Interferon ; Life Sciences ; Malaria ; Malaria, Falciparum - genetics ; Malaria, Falciparum - parasitology ; Male ; Matrix Metalloproteinase 9 - genetics ; Matrix Metalloproteinase 9 - pharmacology ; Medical Microbiology ; Metalloproteinase ; Microbiology ; Models, Biological ; Parasite Load ; Parasites ; Parasitology ; Pathogens ; Phenotype ; Plasmodium falciparum ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - genetics ; Plasmodium falciparum - growth & development ; Plasmodium falciparum - physiology ; Virology</subject><ispartof>Nature microbiology, 2019-09, Vol.4 (9), p.1592-1602</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-7c707fa04b94eade32b2448b203d18da8c7dd1d8e521f07169bcf0c4d197e45f3</citedby><cites>FETCH-LOGICAL-c470t-7c707fa04b94eade32b2448b203d18da8c7dd1d8e521f07169bcf0c4d197e45f3</cites><orcidid>0000-0002-0440-9335 ; 0000-0002-4300-455X ; 0000-0002-1305-3529 ; 0000-0003-3447-3570 ; 0000-0002-1246-7404 ; 0000-0002-8711-3037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41564-019-0474-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41564-019-0474-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31209307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Georgiadou, Athina</creatorcontrib><creatorcontrib>Lee, Hyun Jae</creatorcontrib><creatorcontrib>Walther, Michael</creatorcontrib><creatorcontrib>van Beek, Anna E.</creatorcontrib><creatorcontrib>Fitriani, Fadlila</creatorcontrib><creatorcontrib>Wouters, Diana</creatorcontrib><creatorcontrib>Kuijpers, Taco W.</creatorcontrib><creatorcontrib>Nwakanma, Davis</creatorcontrib><creatorcontrib>D’Alessandro, Umberto</creatorcontrib><creatorcontrib>Riley, Eleanor M.</creatorcontrib><creatorcontrib>Otto, Thomas D.</creatorcontrib><creatorcontrib>Ghani, Azra</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Coin, Lachlan J.</creatorcontrib><creatorcontrib>Conway, David J.</creatorcontrib><creatorcontrib>Bretscher, Michael T.</creatorcontrib><creatorcontrib>Cunnington, Aubrey J.</creatorcontrib><title>Modelling pathogen load dynamics to elucidate mechanistic determinants of host–Plasmodium falciparum interactions</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>During infection, increasing pathogen load stimulates both protective and harmful aspects of the host response. The dynamics of this interaction are hard to quantify in humans, but doing so could improve understanding of the mechanisms of disease and protection. We sought to model the contributions of the parasite multiplication rate and host response to observed parasite load in individual subjects infected with
Plasmodium falciparum
malaria, using only data obtained at the time of clinical presentation, and then to identify their mechanistic correlates. We predicted higher parasite multiplication rates and lower host responsiveness in cases of severe malaria, with severe anaemia being more insidious than cerebral malaria. We predicted that parasite-growth inhibition was associated with platelet consumption, lower expression of
CXCL10
and type 1 interferon-associated genes, but increased cathepsin G and matrix metallopeptidase 9 expression. We found that cathepsin G and matrix metallopeptidase 9 directly inhibit parasite invasion into erythrocytes. The parasite multiplication rate was associated with host iron availability and higher complement factor H levels, lower expression of gametocyte-associated genes but higher expression of translation-associated genes in the parasite. Our findings demonstrate the potential of using explicit modelling of pathogen load dynamics to deepen understanding of host–pathogen interactions and identify mechanistic correlates of protection.
The use of a statistical prediction model to estimate the determinants of parasite load and host response dynamics in humans infected with the human malaria parasite
Plasmodium falciparum
identifies cathepsin G and matrix metallopeptidase 9 as host factors that can inhibit parasite invasion into red blood cells.</description><subject>631/114/2397</subject><subject>631/250/255/1629</subject><subject>631/326/417/2546</subject><subject>Adolescent</subject><subject>Biomedical and Life Sciences</subject><subject>Blood Platelets - cytology</subject><subject>Cathepsin G</subject><subject>Cathepsin G - genetics</subject><subject>Cathepsin G - pharmacology</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Complement factor H</subject><subject>CXCL10 protein</subject><subject>Erythrocytes</subject><subject>Erythrocytes - drug effects</subject><subject>Erythrocytes - parasitology</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Host-Parasite Interactions</subject><subject>Humans</subject><subject>Infant</subject><subject>Infectious Diseases</subject><subject>Interferon</subject><subject>Life Sciences</subject><subject>Malaria</subject><subject>Malaria, Falciparum - genetics</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Male</subject><subject>Matrix Metalloproteinase 9 - genetics</subject><subject>Matrix Metalloproteinase 9 - pharmacology</subject><subject>Medical Microbiology</subject><subject>Metalloproteinase</subject><subject>Microbiology</subject><subject>Models, Biological</subject><subject>Parasite Load</subject><subject>Parasites</subject><subject>Parasitology</subject><subject>Pathogens</subject><subject>Phenotype</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - growth & development</subject><subject>Plasmodium falciparum - physiology</subject><subject>Virology</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kcFqFTEUhoMottQ-gBsJuB49yWQmk40gRa3QUhe6DpnkzL0pM8k1yUi78x18Q5-kKbetddHVOfB_5z8__IS8ZvCOQTu8z4J1vWiAqQaEFM3VM3LIoRuajsv--aP9gBznfAkArOd9P_QvyUHLOKgW5CHJ59HhPPuwoTtTtnGDgc7ROOqug1m8zbREivNqvTMF6YJ2a4LPxVvqsGBafDChZBonuo25_P3959ts8hKdXxc6mdn6nUl19aHCxhYfQ35FXlQl4_HdPCI_Pn_6fnLanF18-Xry8ayxQkJppJUgJwNiVAKNw5aPXIhh5NA6NjgzWOkccwN2nE0gWa9GO4EVjimJopvaI_Jh77tbxwWdxVCSmfUu-cWkax2N1_8rwW_1Jv7SvYRBtKoavL0zSPHnirnoy7imUDNrzqVUSnVdWym2p2yKOSecHj4w0LdV6X1Vulalb6vSV_XmzeNoDxf3xVSA74FcpbDB9O_10643pfSkig</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Georgiadou, Athina</creator><creator>Lee, Hyun Jae</creator><creator>Walther, Michael</creator><creator>van Beek, Anna E.</creator><creator>Fitriani, Fadlila</creator><creator>Wouters, Diana</creator><creator>Kuijpers, Taco W.</creator><creator>Nwakanma, Davis</creator><creator>D’Alessandro, Umberto</creator><creator>Riley, Eleanor M.</creator><creator>Otto, Thomas D.</creator><creator>Ghani, Azra</creator><creator>Levin, Michael</creator><creator>Coin, Lachlan J.</creator><creator>Conway, David J.</creator><creator>Bretscher, Michael T.</creator><creator>Cunnington, Aubrey J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0440-9335</orcidid><orcidid>https://orcid.org/0000-0002-4300-455X</orcidid><orcidid>https://orcid.org/0000-0002-1305-3529</orcidid><orcidid>https://orcid.org/0000-0003-3447-3570</orcidid><orcidid>https://orcid.org/0000-0002-1246-7404</orcidid><orcidid>https://orcid.org/0000-0002-8711-3037</orcidid></search><sort><creationdate>20190901</creationdate><title>Modelling pathogen load dynamics to elucidate mechanistic determinants of host–Plasmodium falciparum interactions</title><author>Georgiadou, Athina ; Lee, Hyun Jae ; Walther, Michael ; van Beek, Anna E. ; Fitriani, Fadlila ; Wouters, Diana ; Kuijpers, Taco W. ; Nwakanma, Davis ; D’Alessandro, Umberto ; Riley, Eleanor M. ; Otto, Thomas D. ; Ghani, Azra ; Levin, Michael ; Coin, Lachlan J. ; Conway, David J. ; Bretscher, Michael T. ; Cunnington, Aubrey J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-7c707fa04b94eade32b2448b203d18da8c7dd1d8e521f07169bcf0c4d197e45f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114/2397</topic><topic>631/250/255/1629</topic><topic>631/326/417/2546</topic><topic>Adolescent</topic><topic>Biomedical and Life Sciences</topic><topic>Blood Platelets - cytology</topic><topic>Cathepsin G</topic><topic>Cathepsin G - genetics</topic><topic>Cathepsin G - pharmacology</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Complement factor H</topic><topic>CXCL10 protein</topic><topic>Erythrocytes</topic><topic>Erythrocytes - drug effects</topic><topic>Erythrocytes - parasitology</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Host-Parasite Interactions</topic><topic>Humans</topic><topic>Infant</topic><topic>Infectious Diseases</topic><topic>Interferon</topic><topic>Life Sciences</topic><topic>Malaria</topic><topic>Malaria, Falciparum - genetics</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Male</topic><topic>Matrix Metalloproteinase 9 - genetics</topic><topic>Matrix Metalloproteinase 9 - pharmacology</topic><topic>Medical Microbiology</topic><topic>Metalloproteinase</topic><topic>Microbiology</topic><topic>Models, Biological</topic><topic>Parasite Load</topic><topic>Parasites</topic><topic>Parasitology</topic><topic>Pathogens</topic><topic>Phenotype</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - growth & development</topic><topic>Plasmodium falciparum - physiology</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgiadou, Athina</creatorcontrib><creatorcontrib>Lee, Hyun Jae</creatorcontrib><creatorcontrib>Walther, Michael</creatorcontrib><creatorcontrib>van Beek, Anna E.</creatorcontrib><creatorcontrib>Fitriani, Fadlila</creatorcontrib><creatorcontrib>Wouters, Diana</creatorcontrib><creatorcontrib>Kuijpers, Taco W.</creatorcontrib><creatorcontrib>Nwakanma, Davis</creatorcontrib><creatorcontrib>D’Alessandro, Umberto</creatorcontrib><creatorcontrib>Riley, Eleanor M.</creatorcontrib><creatorcontrib>Otto, Thomas D.</creatorcontrib><creatorcontrib>Ghani, Azra</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Coin, Lachlan J.</creatorcontrib><creatorcontrib>Conway, David J.</creatorcontrib><creatorcontrib>Bretscher, Michael T.</creatorcontrib><creatorcontrib>Cunnington, Aubrey J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgiadou, Athina</au><au>Lee, Hyun Jae</au><au>Walther, Michael</au><au>van Beek, Anna E.</au><au>Fitriani, Fadlila</au><au>Wouters, Diana</au><au>Kuijpers, Taco W.</au><au>Nwakanma, Davis</au><au>D’Alessandro, Umberto</au><au>Riley, Eleanor M.</au><au>Otto, Thomas D.</au><au>Ghani, Azra</au><au>Levin, Michael</au><au>Coin, Lachlan J.</au><au>Conway, David J.</au><au>Bretscher, Michael T.</au><au>Cunnington, Aubrey J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling pathogen load dynamics to elucidate mechanistic determinants of host–Plasmodium falciparum interactions</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>4</volume><issue>9</issue><spage>1592</spage><epage>1602</epage><pages>1592-1602</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>During infection, increasing pathogen load stimulates both protective and harmful aspects of the host response. The dynamics of this interaction are hard to quantify in humans, but doing so could improve understanding of the mechanisms of disease and protection. We sought to model the contributions of the parasite multiplication rate and host response to observed parasite load in individual subjects infected with
Plasmodium falciparum
malaria, using only data obtained at the time of clinical presentation, and then to identify their mechanistic correlates. We predicted higher parasite multiplication rates and lower host responsiveness in cases of severe malaria, with severe anaemia being more insidious than cerebral malaria. We predicted that parasite-growth inhibition was associated with platelet consumption, lower expression of
CXCL10
and type 1 interferon-associated genes, but increased cathepsin G and matrix metallopeptidase 9 expression. We found that cathepsin G and matrix metallopeptidase 9 directly inhibit parasite invasion into erythrocytes. The parasite multiplication rate was associated with host iron availability and higher complement factor H levels, lower expression of gametocyte-associated genes but higher expression of translation-associated genes in the parasite. Our findings demonstrate the potential of using explicit modelling of pathogen load dynamics to deepen understanding of host–pathogen interactions and identify mechanistic correlates of protection.
The use of a statistical prediction model to estimate the determinants of parasite load and host response dynamics in humans infected with the human malaria parasite
Plasmodium falciparum
identifies cathepsin G and matrix metallopeptidase 9 as host factors that can inhibit parasite invasion into red blood cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31209307</pmid><doi>10.1038/s41564-019-0474-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0440-9335</orcidid><orcidid>https://orcid.org/0000-0002-4300-455X</orcidid><orcidid>https://orcid.org/0000-0002-1305-3529</orcidid><orcidid>https://orcid.org/0000-0003-3447-3570</orcidid><orcidid>https://orcid.org/0000-0002-1246-7404</orcidid><orcidid>https://orcid.org/0000-0002-8711-3037</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-5276 |
ispartof | Nature microbiology, 2019-09, Vol.4 (9), p.1592-1602 |
issn | 2058-5276 2058-5276 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708439 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 631/114/2397 631/250/255/1629 631/326/417/2546 Adolescent Biomedical and Life Sciences Blood Platelets - cytology Cathepsin G Cathepsin G - genetics Cathepsin G - pharmacology Child Child, Preschool Complement factor H CXCL10 protein Erythrocytes Erythrocytes - drug effects Erythrocytes - parasitology Female Gene Expression Profiling Host-Parasite Interactions Humans Infant Infectious Diseases Interferon Life Sciences Malaria Malaria, Falciparum - genetics Malaria, Falciparum - parasitology Male Matrix Metalloproteinase 9 - genetics Matrix Metalloproteinase 9 - pharmacology Medical Microbiology Metalloproteinase Microbiology Models, Biological Parasite Load Parasites Parasitology Pathogens Phenotype Plasmodium falciparum Plasmodium falciparum - drug effects Plasmodium falciparum - genetics Plasmodium falciparum - growth & development Plasmodium falciparum - physiology Virology |
title | Modelling pathogen load dynamics to elucidate mechanistic determinants of host–Plasmodium falciparum interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20pathogen%20load%20dynamics%20to%20elucidate%20mechanistic%20determinants%20of%20host%E2%80%93Plasmodium%20falciparum%20interactions&rft.jtitle=Nature%20microbiology&rft.au=Georgiadou,%20Athina&rft.date=2019-09-01&rft.volume=4&rft.issue=9&rft.spage=1592&rft.epage=1602&rft.pages=1592-1602&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-019-0474-x&rft_dat=%3Cproquest_pubme%3E2277999553%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277999553&rft_id=info:pmid/31209307&rfr_iscdi=true |