Statistical predictions with glmnet
Elastic net type regression methods have become very popular for prediction of certain outcomes in epigenome-wide association studies (EWAS). The methods considered accept biased coefficient estimates in return for lower variance thus obtaining improved prediction accuracy. We provide guidelines on...
Gespeichert in:
Veröffentlicht in: | Clinical epigenetics 2019-08, Vol.11 (1), p.123, Article 123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 123 |
container_title | Clinical epigenetics |
container_volume | 11 |
creator | Engebretsen, Solveig Bohlin, Jon |
description | Elastic net type regression methods have become very popular for prediction of certain outcomes in epigenome-wide association studies (EWAS). The methods considered accept biased coefficient estimates in return for lower variance thus obtaining improved prediction accuracy. We provide guidelines on how to obtain parsimonious models with low mean squared error and include easy to follow walk-through examples for each step in R. |
doi_str_mv | 10.1186/s13148-019-0730-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597662101</galeid><sourcerecordid>A597662101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-b6f3aec4284401125d99db9e9715fe7b05a1cf2e72fdb5fa39a286370912c3bd3</originalsourceid><addsrcrecordid>eNptUV1PHCEUJY2mGvUH9KXdxOdRLgxfLybG1LaJiQ_aZ8IwsGJmYAuspv9eNqvbmggP3FzOOZfDQegL4DMAyc8LUOhlh0F1WFDcwSd02PqyE1jSvV0t2AE6KeURt0WVUoA_o4PG7CmX5BCd3lVTQ6nBmmmxym4MtoYUy-I51IfFcpqjq8do35upuJPX8wj9vv5-f_Wzu7n98evq8qazDGTtBu6pcbYnsu8xAGGjUuOgnBLAvBMDZgasJ04QPw7MG6oMkZwKrIBYOoz0CF1sdVfrYXajdbFmM-lVDrPJf3UyQb-_ieFBL9OT5s0yoawJfNsK2LyxFHVM2WjAkhEtuGKkIU5fR-T0Z-1K1Y9pnWNzpQlRlEHPufyHWprJ6RB9auPsHIrVl0wJzglgaKizD1Btj24ONkXnQ-u_I8Db81Ip2fmdNcB6k6neZqpbpnqTqd5wvv7_JzvGW4L0BVSgmQI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293514668</pqid></control><display><type>article</type><title>Statistical predictions with glmnet</title><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Engebretsen, Solveig ; Bohlin, Jon</creator><creatorcontrib>Engebretsen, Solveig ; Bohlin, Jon</creatorcontrib><description>Elastic net type regression methods have become very popular for prediction of certain outcomes in epigenome-wide association studies (EWAS). The methods considered accept biased coefficient estimates in return for lower variance thus obtaining improved prediction accuracy. We provide guidelines on how to obtain parsimonious models with low mean squared error and include easy to follow walk-through examples for each step in R.</description><identifier>ISSN: 1868-7075</identifier><identifier>ISSN: 1868-7083</identifier><identifier>EISSN: 1868-7083</identifier><identifier>EISSN: 1868-7075</identifier><identifier>DOI: 10.1186/s13148-019-0730-1</identifier><identifier>PMID: 31443682</identifier><language>eng</language><publisher>Germany: BioMed Central Ltd</publisher><subject>Analysis ; Bias ; Economic models ; Epidemiology ; Epigenetic inheritance ; Letter to the Editor ; Methods ; Public health ; Resveratrol ; Statistical prediction</subject><ispartof>Clinical epigenetics, 2019-08, Vol.11 (1), p.123, Article 123</ispartof><rights>COPYRIGHT 2019 BioMed Central Ltd.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>The Author(s). 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-b6f3aec4284401125d99db9e9715fe7b05a1cf2e72fdb5fa39a286370912c3bd3</citedby><cites>FETCH-LOGICAL-c518t-b6f3aec4284401125d99db9e9715fe7b05a1cf2e72fdb5fa39a286370912c3bd3</cites><orcidid>0000-0002-0992-1311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708235/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708235/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,26567,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31443682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Engebretsen, Solveig</creatorcontrib><creatorcontrib>Bohlin, Jon</creatorcontrib><title>Statistical predictions with glmnet</title><title>Clinical epigenetics</title><addtitle>Clin Epigenetics</addtitle><description>Elastic net type regression methods have become very popular for prediction of certain outcomes in epigenome-wide association studies (EWAS). The methods considered accept biased coefficient estimates in return for lower variance thus obtaining improved prediction accuracy. We provide guidelines on how to obtain parsimonious models with low mean squared error and include easy to follow walk-through examples for each step in R.</description><subject>Analysis</subject><subject>Bias</subject><subject>Economic models</subject><subject>Epidemiology</subject><subject>Epigenetic inheritance</subject><subject>Letter to the Editor</subject><subject>Methods</subject><subject>Public health</subject><subject>Resveratrol</subject><subject>Statistical prediction</subject><issn>1868-7075</issn><issn>1868-7083</issn><issn>1868-7083</issn><issn>1868-7075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>3HK</sourceid><recordid>eNptUV1PHCEUJY2mGvUH9KXdxOdRLgxfLybG1LaJiQ_aZ8IwsGJmYAuspv9eNqvbmggP3FzOOZfDQegL4DMAyc8LUOhlh0F1WFDcwSd02PqyE1jSvV0t2AE6KeURt0WVUoA_o4PG7CmX5BCd3lVTQ6nBmmmxym4MtoYUy-I51IfFcpqjq8do35upuJPX8wj9vv5-f_Wzu7n98evq8qazDGTtBu6pcbYnsu8xAGGjUuOgnBLAvBMDZgasJ04QPw7MG6oMkZwKrIBYOoz0CF1sdVfrYXajdbFmM-lVDrPJf3UyQb-_ieFBL9OT5s0yoawJfNsK2LyxFHVM2WjAkhEtuGKkIU5fR-T0Z-1K1Y9pnWNzpQlRlEHPufyHWprJ6RB9auPsHIrVl0wJzglgaKizD1Btj24ONkXnQ-u_I8Db81Ip2fmdNcB6k6neZqpbpnqTqd5wvv7_JzvGW4L0BVSgmQI</recordid><startdate>20190823</startdate><enddate>20190823</enddate><creator>Engebretsen, Solveig</creator><creator>Bohlin, Jon</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0992-1311</orcidid></search><sort><creationdate>20190823</creationdate><title>Statistical predictions with glmnet</title><author>Engebretsen, Solveig ; Bohlin, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-b6f3aec4284401125d99db9e9715fe7b05a1cf2e72fdb5fa39a286370912c3bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Bias</topic><topic>Economic models</topic><topic>Epidemiology</topic><topic>Epigenetic inheritance</topic><topic>Letter to the Editor</topic><topic>Methods</topic><topic>Public health</topic><topic>Resveratrol</topic><topic>Statistical prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engebretsen, Solveig</creatorcontrib><creatorcontrib>Bohlin, Jon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical epigenetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engebretsen, Solveig</au><au>Bohlin, Jon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical predictions with glmnet</atitle><jtitle>Clinical epigenetics</jtitle><addtitle>Clin Epigenetics</addtitle><date>2019-08-23</date><risdate>2019</risdate><volume>11</volume><issue>1</issue><spage>123</spage><pages>123-</pages><artnum>123</artnum><issn>1868-7075</issn><issn>1868-7083</issn><eissn>1868-7083</eissn><eissn>1868-7075</eissn><abstract>Elastic net type regression methods have become very popular for prediction of certain outcomes in epigenome-wide association studies (EWAS). The methods considered accept biased coefficient estimates in return for lower variance thus obtaining improved prediction accuracy. We provide guidelines on how to obtain parsimonious models with low mean squared error and include easy to follow walk-through examples for each step in R.</abstract><cop>Germany</cop><pub>BioMed Central Ltd</pub><pmid>31443682</pmid><doi>10.1186/s13148-019-0730-1</doi><orcidid>https://orcid.org/0000-0002-0992-1311</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-7075 |
ispartof | Clinical epigenetics, 2019-08, Vol.11 (1), p.123, Article 123 |
issn | 1868-7075 1868-7083 1868-7083 1868-7075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708235 |
source | NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Analysis Bias Economic models Epidemiology Epigenetic inheritance Letter to the Editor Methods Public health Resveratrol Statistical prediction |
title | Statistical predictions with glmnet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20predictions%20with%20glmnet&rft.jtitle=Clinical%20epigenetics&rft.au=Engebretsen,%20Solveig&rft.date=2019-08-23&rft.volume=11&rft.issue=1&rft.spage=123&rft.pages=123-&rft.artnum=123&rft.issn=1868-7075&rft.eissn=1868-7083&rft_id=info:doi/10.1186/s13148-019-0730-1&rft_dat=%3Cgale_pubme%3EA597662101%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2293514668&rft_id=info:pmid/31443682&rft_galeid=A597662101&rfr_iscdi=true |