Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials

Protein-modified biomaterials can be used to modulate cellular function in three dimensions. However, as the dynamic heterogeneous control over complex cell physiology continues to be sought, strategies that permit a reversible and user-defined tethering of fragile proteins to materials remain in gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2019-09, Vol.18 (9), p.1005-1014
Hauptverfasser: Shadish, Jared A., Benuska, Gabrielle M., DeForest, Cole A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1014
container_issue 9
container_start_page 1005
container_title Nature materials
container_volume 18
creator Shadish, Jared A.
Benuska, Gabrielle M.
DeForest, Cole A.
description Protein-modified biomaterials can be used to modulate cellular function in three dimensions. However, as the dynamic heterogeneous control over complex cell physiology continues to be sought, strategies that permit a reversible and user-defined tethering of fragile proteins to materials remain in great need. Here we introduce a modular and robust semisynthetic approach to reversibly pattern cell-laden hydrogels with site-specifically modified proteins. Exploiting a versatile sortase-mediated transpeptidation, we generate a diverse library of homogeneous, singly functionalized proteins with bioorthogonal reactive handles for biomaterial modification. We demonstrate the photoreversible immobilization of fluorescent proteins, enzymes and growth factors to gels with excellent spatiotemporal resolution while retaining native protein bioactivity. Localized epidermal growth factor presentation enables dynamic regulation over proliferation, intracellular mitogen-activated protein kinase signalling and subcellularly resolved receptor endocytosis. Our method broadly permits the modification and patterning of a wide range of proteins, which provides newfound avenues to probe and direct advanced cellular fates in four dimensions. A modular approach of photoreversible patterning of macromolecules with high spatiotemporal resolution within hydrogels is employed to generate biomaterials with controllable cell activity through site-specific immobilization of proteins.
doi_str_mv 10.1038/s41563-019-0367-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6706293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277419558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-f1dded2827f6e52d4f5652318d5170190ec5484d5fc1361763f01ac6b63dfb3d3</originalsourceid><addsrcrecordid>eNp9kUuLFTEQhYMozkN_gBsJuHHTmsqzeyPo6Kgw4EJdh9ykcs3Q3WmTvgPz783lXscH6KqK1KkvOTmEPAH2ApjoX1YJSouOwdAxoU1n7pFTkEZ3Umt2_9gDcH5Czmq9ZoyDUvohOREADSDNKfn8JmXn13SDtKYVu7qgTzF5N463dMqh9RjoUvKKaa405kLlW7q4dcUyp3lLc6RbHOkm5cm1s-TG-og8iK3g42M9J18v3325-NBdfXr_8eL1Vec1g7WLEAIG3nMTNSoeZFRacQF9UGCaJ4ZeyV4GFT0IDUaLyMB5vdEixI0I4py8OnCX3WbC4HFeixvtUtLkyq3NLtk_J3P6Zrf5xmrDNB9EAzw_Akr-vsO62ilVj-PoZsy7ajkXnA2yN32TPvtLep13ZW72LB_ASM57A_9VcWMkDErtWXBQ-ZJrLRjvngzM7oO1h2Bt-wS7D9aatvP0d693Gz-TbAJ-ENQ2mrdYfl39b-oPKDGtwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277419558</pqid></control><display><type>article</type><title>Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials</title><source>MEDLINE</source><source>Springer Journals</source><source>Nature Journals Online</source><creator>Shadish, Jared A. ; Benuska, Gabrielle M. ; DeForest, Cole A.</creator><creatorcontrib>Shadish, Jared A. ; Benuska, Gabrielle M. ; DeForest, Cole A.</creatorcontrib><description>Protein-modified biomaterials can be used to modulate cellular function in three dimensions. However, as the dynamic heterogeneous control over complex cell physiology continues to be sought, strategies that permit a reversible and user-defined tethering of fragile proteins to materials remain in great need. Here we introduce a modular and robust semisynthetic approach to reversibly pattern cell-laden hydrogels with site-specifically modified proteins. Exploiting a versatile sortase-mediated transpeptidation, we generate a diverse library of homogeneous, singly functionalized proteins with bioorthogonal reactive handles for biomaterial modification. We demonstrate the photoreversible immobilization of fluorescent proteins, enzymes and growth factors to gels with excellent spatiotemporal resolution while retaining native protein bioactivity. Localized epidermal growth factor presentation enables dynamic regulation over proliferation, intracellular mitogen-activated protein kinase signalling and subcellularly resolved receptor endocytosis. Our method broadly permits the modification and patterning of a wide range of proteins, which provides newfound avenues to probe and direct advanced cellular fates in four dimensions. A modular approach of photoreversible patterning of macromolecules with high spatiotemporal resolution within hydrogels is employed to generate biomaterials with controllable cell activity through site-specific immobilization of proteins.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0367-7</identifier><identifier>PMID: 31110347</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/2035 ; 631/61/54 ; 631/92/611 ; 631/92/612 ; 639/638/439 ; Biocompatible Materials ; Biological activity ; Biomaterials ; Biomedical materials ; Cell Differentiation ; Chemistry and Materials Science ; Condensed Matter Physics ; Controllability ; Fluorescence ; Gels ; Growth factors ; Hydrogels ; Immobilization ; Kinases ; Macromolecules ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Patterning ; Proteins ; Proteins - chemistry ; Tethering ; Tissue Engineering - methods</subject><ispartof>Nature materials, 2019-09, Vol.18 (9), p.1005-1014</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-f1dded2827f6e52d4f5652318d5170190ec5484d5fc1361763f01ac6b63dfb3d3</citedby><cites>FETCH-LOGICAL-c601t-f1dded2827f6e52d4f5652318d5170190ec5484d5fc1361763f01ac6b63dfb3d3</cites><orcidid>0000-0003-1529-4286 ; 0000-0003-0337-3577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-019-0367-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-019-0367-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31110347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shadish, Jared A.</creatorcontrib><creatorcontrib>Benuska, Gabrielle M.</creatorcontrib><creatorcontrib>DeForest, Cole A.</creatorcontrib><title>Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Protein-modified biomaterials can be used to modulate cellular function in three dimensions. However, as the dynamic heterogeneous control over complex cell physiology continues to be sought, strategies that permit a reversible and user-defined tethering of fragile proteins to materials remain in great need. Here we introduce a modular and robust semisynthetic approach to reversibly pattern cell-laden hydrogels with site-specifically modified proteins. Exploiting a versatile sortase-mediated transpeptidation, we generate a diverse library of homogeneous, singly functionalized proteins with bioorthogonal reactive handles for biomaterial modification. We demonstrate the photoreversible immobilization of fluorescent proteins, enzymes and growth factors to gels with excellent spatiotemporal resolution while retaining native protein bioactivity. Localized epidermal growth factor presentation enables dynamic regulation over proliferation, intracellular mitogen-activated protein kinase signalling and subcellularly resolved receptor endocytosis. Our method broadly permits the modification and patterning of a wide range of proteins, which provides newfound avenues to probe and direct advanced cellular fates in four dimensions. A modular approach of photoreversible patterning of macromolecules with high spatiotemporal resolution within hydrogels is employed to generate biomaterials with controllable cell activity through site-specific immobilization of proteins.</description><subject>631/61/2035</subject><subject>631/61/54</subject><subject>631/92/611</subject><subject>631/92/612</subject><subject>639/638/439</subject><subject>Biocompatible Materials</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell Differentiation</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Controllability</subject><subject>Fluorescence</subject><subject>Gels</subject><subject>Growth factors</subject><subject>Hydrogels</subject><subject>Immobilization</subject><subject>Kinases</subject><subject>Macromolecules</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Patterning</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Tethering</subject><subject>Tissue Engineering - methods</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUuLFTEQhYMozkN_gBsJuHHTmsqzeyPo6Kgw4EJdh9ykcs3Q3WmTvgPz783lXscH6KqK1KkvOTmEPAH2ApjoX1YJSouOwdAxoU1n7pFTkEZ3Umt2_9gDcH5Czmq9ZoyDUvohOREADSDNKfn8JmXn13SDtKYVu7qgTzF5N463dMqh9RjoUvKKaa405kLlW7q4dcUyp3lLc6RbHOkm5cm1s-TG-og8iK3g42M9J18v3325-NBdfXr_8eL1Vec1g7WLEAIG3nMTNSoeZFRacQF9UGCaJ4ZeyV4GFT0IDUaLyMB5vdEixI0I4py8OnCX3WbC4HFeixvtUtLkyq3NLtk_J3P6Zrf5xmrDNB9EAzw_Akr-vsO62ilVj-PoZsy7ajkXnA2yN32TPvtLep13ZW72LB_ASM57A_9VcWMkDErtWXBQ-ZJrLRjvngzM7oO1h2Bt-wS7D9aatvP0d693Gz-TbAJ-ENQ2mrdYfl39b-oPKDGtwA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Shadish, Jared A.</creator><creator>Benuska, Gabrielle M.</creator><creator>DeForest, Cole A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1529-4286</orcidid><orcidid>https://orcid.org/0000-0003-0337-3577</orcidid></search><sort><creationdate>20190901</creationdate><title>Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials</title><author>Shadish, Jared A. ; Benuska, Gabrielle M. ; DeForest, Cole A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-f1dded2827f6e52d4f5652318d5170190ec5484d5fc1361763f01ac6b63dfb3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/61/2035</topic><topic>631/61/54</topic><topic>631/92/611</topic><topic>631/92/612</topic><topic>639/638/439</topic><topic>Biocompatible Materials</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell Differentiation</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Controllability</topic><topic>Fluorescence</topic><topic>Gels</topic><topic>Growth factors</topic><topic>Hydrogels</topic><topic>Immobilization</topic><topic>Kinases</topic><topic>Macromolecules</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Patterning</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Tethering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shadish, Jared A.</creatorcontrib><creatorcontrib>Benuska, Gabrielle M.</creatorcontrib><creatorcontrib>DeForest, Cole A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shadish, Jared A.</au><au>Benuska, Gabrielle M.</au><au>DeForest, Cole A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>18</volume><issue>9</issue><spage>1005</spage><epage>1014</epage><pages>1005-1014</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Protein-modified biomaterials can be used to modulate cellular function in three dimensions. However, as the dynamic heterogeneous control over complex cell physiology continues to be sought, strategies that permit a reversible and user-defined tethering of fragile proteins to materials remain in great need. Here we introduce a modular and robust semisynthetic approach to reversibly pattern cell-laden hydrogels with site-specifically modified proteins. Exploiting a versatile sortase-mediated transpeptidation, we generate a diverse library of homogeneous, singly functionalized proteins with bioorthogonal reactive handles for biomaterial modification. We demonstrate the photoreversible immobilization of fluorescent proteins, enzymes and growth factors to gels with excellent spatiotemporal resolution while retaining native protein bioactivity. Localized epidermal growth factor presentation enables dynamic regulation over proliferation, intracellular mitogen-activated protein kinase signalling and subcellularly resolved receptor endocytosis. Our method broadly permits the modification and patterning of a wide range of proteins, which provides newfound avenues to probe and direct advanced cellular fates in four dimensions. A modular approach of photoreversible patterning of macromolecules with high spatiotemporal resolution within hydrogels is employed to generate biomaterials with controllable cell activity through site-specific immobilization of proteins.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31110347</pmid><doi>10.1038/s41563-019-0367-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1529-4286</orcidid><orcidid>https://orcid.org/0000-0003-0337-3577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2019-09, Vol.18 (9), p.1005-1014
issn 1476-1122
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6706293
source MEDLINE; Springer Journals; Nature Journals Online
subjects 631/61/2035
631/61/54
631/92/611
631/92/612
639/638/439
Biocompatible Materials
Biological activity
Biomaterials
Biomedical materials
Cell Differentiation
Chemistry and Materials Science
Condensed Matter Physics
Controllability
Fluorescence
Gels
Growth factors
Hydrogels
Immobilization
Kinases
Macromolecules
Materials Science
Nanotechnology
Optical and Electronic Materials
Patterning
Proteins
Proteins - chemistry
Tethering
Tissue Engineering - methods
title Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioactive%20site-specifically%20modified%20proteins%20for%204D%20patterning%20of%20gel%20biomaterials&rft.jtitle=Nature%20materials&rft.au=Shadish,%20Jared%20A.&rft.date=2019-09-01&rft.volume=18&rft.issue=9&rft.spage=1005&rft.epage=1014&rft.pages=1005-1014&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0367-7&rft_dat=%3Cproquest_pubme%3E2277419558%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277419558&rft_id=info:pmid/31110347&rfr_iscdi=true