Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase
The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescen...
Gespeichert in:
Veröffentlicht in: | Cell 2019-07, Vol.178 (3), p.600-611.e16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 611.e16 |
---|---|
container_issue | 3 |
container_start_page | 600 |
container_title | Cell |
container_volume | 178 |
creator | Wasserman, Michael R. Schauer, Grant D. O’Donnell, Michael E. Liu, Shixin |
description | The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate—distinct from that between Mcm2/5 used for origin loading—is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.
[Display omitted]
•Eukaryotic CMG helicase employs a gate in its ring to switch between ss and dsDNA•Gating enables CMG to vacate a replication fork when uncoupled from DNA polymerase•CMG diffuses on dsDNA and uses this gate to enter a fork and restart replication•Mcm10, an essential replisome factor, tethers CMG to DNA during the gating process
A “gate” in the eukaryotic CMG helicase allows it to switch between single- and double-stranded DNA, providing an explanation for how replication forks can continue past DNA lesions and restart after stalling |
doi_str_mv | 10.1016/j.cell.2019.06.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6705614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867419307354</els_id><sourcerecordid>2305136947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-c74ce3eb7f5a6fedb2796d745064236bfedc7e7b9e1c3706df3107bbd71d10123</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokPhD7BAXrJJ8CO2EwkhjYZ2WqmARMva8uOmeMg4g50Zqf8eR1OqdgMry9ffObo-B6G3lNSUUPlhUzsYhpoR2tVE1oSzZ2hBSaeqhir2HC0I6VjVStWcoFc5bwghrRDiJTrhlDdt26oFuvkOuyE4M4Ux4vMx_cJLN4XD8X6Z8Vk0dgCP7R02-DrE2wGq6ymZ6Mvw89clXpsJcIh49WWNL2C2yvAavejNkOHN_XmKfpyf3awuqqtv68vV8qpyQjRT5VTjgINVvTCyB2-Z6qRXjSCyYVzaMnIKlO2AOq6I9D2nRFnrFfUlAMZP0aej725vtwWGWDYb9C6FrUl3ejRBP32J4ae-HQ9aKiIkbYrB-3uDNP7eQ570NuQ5VBNh3GfNOBGUy65R_0eZFEpR1s0oO6IujTkn6B82okTPzemNnpV6bk4TqUtzRfTu8V8eJH-rKsDHIwAl0UOApLMLEB34kMBN2o_hX_5_AAJWqX8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265771297</pqid></control><display><type>article</type><title>Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wasserman, Michael R. ; Schauer, Grant D. ; O’Donnell, Michael E. ; Liu, Shixin</creator><creatorcontrib>Wasserman, Michael R. ; Schauer, Grant D. ; O’Donnell, Michael E. ; Liu, Shixin</creatorcontrib><description>The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate—distinct from that between Mcm2/5 used for origin loading—is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.
[Display omitted]
•Eukaryotic CMG helicase employs a gate in its ring to switch between ss and dsDNA•Gating enables CMG to vacate a replication fork when uncoupled from DNA polymerase•CMG diffuses on dsDNA and uses this gate to enter a fork and restart replication•Mcm10, an essential replisome factor, tethers CMG to DNA during the gating process
A “gate” in the eukaryotic CMG helicase allows it to switch between single- and double-stranded DNA, providing an explanation for how replication forks can continue past DNA lesions and restart after stalling</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2019.06.032</identifier><identifier>PMID: 31348887</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Chromosomal Proteins, Non-Histone - metabolism ; CMG ; DNA - metabolism ; DNA repair ; DNA Replication ; DNA, Single-Stranded - chemistry ; DNA, Single-Stranded - metabolism ; DNA-Binding Proteins - metabolism ; DNA-directed DNA polymerase ; fluorescence ; fluorescence microscopy ; Fluorescence Resonance Energy Transfer ; Fluorescent Dyes - chemistry ; fork restart ; Mcm10 ; Minichromosome Maintenance Proteins - metabolism ; Nuclear Proteins - metabolism ; optical tweezers ; origin initiation ; replisome ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; single-molecule fluorescence ; single-stranded DNA</subject><ispartof>Cell, 2019-07, Vol.178 (3), p.600-611.e16</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-c74ce3eb7f5a6fedb2796d745064236bfedc7e7b9e1c3706df3107bbd71d10123</citedby><cites>FETCH-LOGICAL-c554t-c74ce3eb7f5a6fedb2796d745064236bfedc7e7b9e1c3706df3107bbd71d10123</cites><orcidid>0000-0003-4238-7066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867419307354$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31348887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wasserman, Michael R.</creatorcontrib><creatorcontrib>Schauer, Grant D.</creatorcontrib><creatorcontrib>O’Donnell, Michael E.</creatorcontrib><creatorcontrib>Liu, Shixin</creatorcontrib><title>Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase</title><title>Cell</title><addtitle>Cell</addtitle><description>The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate—distinct from that between Mcm2/5 used for origin loading—is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.
[Display omitted]
•Eukaryotic CMG helicase employs a gate in its ring to switch between ss and dsDNA•Gating enables CMG to vacate a replication fork when uncoupled from DNA polymerase•CMG diffuses on dsDNA and uses this gate to enter a fork and restart replication•Mcm10, an essential replisome factor, tethers CMG to DNA during the gating process
A “gate” in the eukaryotic CMG helicase allows it to switch between single- and double-stranded DNA, providing an explanation for how replication forks can continue past DNA lesions and restart after stalling</description><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>CMG</subject><subject>DNA - metabolism</subject><subject>DNA repair</subject><subject>DNA Replication</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-directed DNA polymerase</subject><subject>fluorescence</subject><subject>fluorescence microscopy</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fluorescent Dyes - chemistry</subject><subject>fork restart</subject><subject>Mcm10</subject><subject>Minichromosome Maintenance Proteins - metabolism</subject><subject>Nuclear Proteins - metabolism</subject><subject>optical tweezers</subject><subject>origin initiation</subject><subject>replisome</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>single-molecule fluorescence</subject><subject>single-stranded DNA</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EokPhD7BAXrJJ8CO2EwkhjYZ2WqmARMva8uOmeMg4g50Zqf8eR1OqdgMry9ffObo-B6G3lNSUUPlhUzsYhpoR2tVE1oSzZ2hBSaeqhir2HC0I6VjVStWcoFc5bwghrRDiJTrhlDdt26oFuvkOuyE4M4Ux4vMx_cJLN4XD8X6Z8Vk0dgCP7R02-DrE2wGq6ymZ6Mvw89clXpsJcIh49WWNL2C2yvAavejNkOHN_XmKfpyf3awuqqtv68vV8qpyQjRT5VTjgINVvTCyB2-Z6qRXjSCyYVzaMnIKlO2AOq6I9D2nRFnrFfUlAMZP0aej725vtwWGWDYb9C6FrUl3ejRBP32J4ae-HQ9aKiIkbYrB-3uDNP7eQ570NuQ5VBNh3GfNOBGUy65R_0eZFEpR1s0oO6IujTkn6B82okTPzemNnpV6bk4TqUtzRfTu8V8eJH-rKsDHIwAl0UOApLMLEB34kMBN2o_hX_5_AAJWqX8</recordid><startdate>20190725</startdate><enddate>20190725</enddate><creator>Wasserman, Michael R.</creator><creator>Schauer, Grant D.</creator><creator>O’Donnell, Michael E.</creator><creator>Liu, Shixin</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4238-7066</orcidid></search><sort><creationdate>20190725</creationdate><title>Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase</title><author>Wasserman, Michael R. ; Schauer, Grant D. ; O’Donnell, Michael E. ; Liu, Shixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-c74ce3eb7f5a6fedb2796d745064236bfedc7e7b9e1c3706df3107bbd71d10123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>CMG</topic><topic>DNA - metabolism</topic><topic>DNA repair</topic><topic>DNA Replication</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-directed DNA polymerase</topic><topic>fluorescence</topic><topic>fluorescence microscopy</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fluorescent Dyes - chemistry</topic><topic>fork restart</topic><topic>Mcm10</topic><topic>Minichromosome Maintenance Proteins - metabolism</topic><topic>Nuclear Proteins - metabolism</topic><topic>optical tweezers</topic><topic>origin initiation</topic><topic>replisome</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>single-molecule fluorescence</topic><topic>single-stranded DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasserman, Michael R.</creatorcontrib><creatorcontrib>Schauer, Grant D.</creatorcontrib><creatorcontrib>O’Donnell, Michael E.</creatorcontrib><creatorcontrib>Liu, Shixin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasserman, Michael R.</au><au>Schauer, Grant D.</au><au>O’Donnell, Michael E.</au><au>Liu, Shixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2019-07-25</date><risdate>2019</risdate><volume>178</volume><issue>3</issue><spage>600</spage><epage>611.e16</epage><pages>600-611.e16</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate—distinct from that between Mcm2/5 used for origin loading—is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.
[Display omitted]
•Eukaryotic CMG helicase employs a gate in its ring to switch between ss and dsDNA•Gating enables CMG to vacate a replication fork when uncoupled from DNA polymerase•CMG diffuses on dsDNA and uses this gate to enter a fork and restart replication•Mcm10, an essential replisome factor, tethers CMG to DNA during the gating process
A “gate” in the eukaryotic CMG helicase allows it to switch between single- and double-stranded DNA, providing an explanation for how replication forks can continue past DNA lesions and restart after stalling</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31348887</pmid><doi>10.1016/j.cell.2019.06.032</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4238-7066</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2019-07, Vol.178 (3), p.600-611.e16 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6705614 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Chromosomal Proteins, Non-Histone - metabolism CMG DNA - metabolism DNA repair DNA Replication DNA, Single-Stranded - chemistry DNA, Single-Stranded - metabolism DNA-Binding Proteins - metabolism DNA-directed DNA polymerase fluorescence fluorescence microscopy Fluorescence Resonance Energy Transfer Fluorescent Dyes - chemistry fork restart Mcm10 Minichromosome Maintenance Proteins - metabolism Nuclear Proteins - metabolism optical tweezers origin initiation replisome Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism single-molecule fluorescence single-stranded DNA |
title | Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Replication%20Fork%20Activation%20Is%20Enabled%20by%20a%20Single-Stranded%20DNA%20Gate%20in%20CMG%20Helicase&rft.jtitle=Cell&rft.au=Wasserman,%20Michael%20R.&rft.date=2019-07-25&rft.volume=178&rft.issue=3&rft.spage=600&rft.epage=611.e16&rft.pages=600-611.e16&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2019.06.032&rft_dat=%3Cproquest_pubme%3E2305136947%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265771297&rft_id=info:pmid/31348887&rft_els_id=S0092867419307354&rfr_iscdi=true |