Marginal Likelihoods in Phylogenetics: A Review of Methods and Applications

By providing a framework of accounting for the shared ancestry inherent to all life, phylogenetics is becoming the statistical foundation of biology. The importance of model choice continues to grow as phylogenetic models continue to increase in complexity to better capture micro- and macroevolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systematic biology 2019-09, Vol.68 (5), p.681-697
Hauptverfasser: Oaks, Jamie R., Cobb, Kerry A., Minin, Vladimir N., Leaché, Adam D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 5
container_start_page 681
container_title Systematic biology
container_volume 68
creator Oaks, Jamie R.
Cobb, Kerry A.
Minin, Vladimir N.
Leaché, Adam D.
description By providing a framework of accounting for the shared ancestry inherent to all life, phylogenetics is becoming the statistical foundation of biology. The importance of model choice continues to grow as phylogenetic models continue to increase in complexity to better capture micro- and macroevolutionary processes. In a Bayesian framework, the marginal likelihood is how data update our prior beliefs about models, which gives us an intuitive measure of comparing model fit that is grounded in probability theory. Given the rapid increase in the number and complexity of phylogenetic models, methods for approximating marginal likelihoods are increasingly important. Here, we try to provide an intuitive description of marginal likelihoods and why they are important in Bayesian model testing. We also categorize and review methods for estimating marginal likelihoods of phylogenetic models, highlighting several recent methods that provide well-behaved estimates. Furthermore, we review some empirical studies that demonstrate how marginal likelihoods can be used to learn about models of evolution frombiological data.We discuss promising alternatives that cancomplement marginal likelihoods for Bayesian model choice, including posterior-predictive methods. Using simulations, we find one alternative method based on approximate-Bayesian computation to be biased. We conclude by discussing the challenges of Bayesian model choice and future directions that promise to improve the approximation of marginal likelihoods and Bayesian phylogenetics as a whole. [Marginal likelihood; model choice; phylogenetics.]
doi_str_mv 10.1093/sysbio/syz003
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6701458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26770388</jstor_id><sourcerecordid>26770388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-70f5e836e33cf86702ccfb5f96187e5030833449d293523ab6ea545b4c6941873</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMoVqtHj0ovgpfVZCcfm4sgxS-o6EHBW8im2TZ1u6nJVqi_3pStRU8zMA_vOzwInRB8SbCEq7iKpfNpfGMMO-iAYMGzAvj77nrnkDHCRA8dxjjDmBDOyD7qAea8KIAeoPMnHSau0fVg5D5s7abej-PANYOX6ar2E9vY1pl4hPYqXUd7vJl99HZ3-zp8yEbP94_Dm1FmKJZtJnDFbOq2AKYquMC5MVXJKslJISzDgAsASuU4l8By0CW3mlFWUsMlTQj00XWXu1iWczs2tmmDrtUiuLkOK-W1U_8vjZuqif9SqYtQVqSAi01A8J9LG1s1d9HYutaN9cuociIkBZEnc32UdagJPsZgq20NwWqtVnVqVac28Wd_f9vSvy4TcNoBs9j6sL3nXAgMifgBdS-ANg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179437209</pqid></control><display><type>article</type><title>Marginal Likelihoods in Phylogenetics: A Review of Methods and Applications</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals Current</source><source>Alma/SFX Local Collection</source><creator>Oaks, Jamie R. ; Cobb, Kerry A. ; Minin, Vladimir N. ; Leaché, Adam D.</creator><contributor>Gascuel, Olivier</contributor><creatorcontrib>Oaks, Jamie R. ; Cobb, Kerry A. ; Minin, Vladimir N. ; Leaché, Adam D. ; Gascuel, Olivier</creatorcontrib><description>By providing a framework of accounting for the shared ancestry inherent to all life, phylogenetics is becoming the statistical foundation of biology. The importance of model choice continues to grow as phylogenetic models continue to increase in complexity to better capture micro- and macroevolutionary processes. In a Bayesian framework, the marginal likelihood is how data update our prior beliefs about models, which gives us an intuitive measure of comparing model fit that is grounded in probability theory. Given the rapid increase in the number and complexity of phylogenetic models, methods for approximating marginal likelihoods are increasingly important. Here, we try to provide an intuitive description of marginal likelihoods and why they are important in Bayesian model testing. We also categorize and review methods for estimating marginal likelihoods of phylogenetic models, highlighting several recent methods that provide well-behaved estimates. Furthermore, we review some empirical studies that demonstrate how marginal likelihoods can be used to learn about models of evolution frombiological data.We discuss promising alternatives that cancomplement marginal likelihoods for Bayesian model choice, including posterior-predictive methods. Using simulations, we find one alternative method based on approximate-Bayesian computation to be biased. We conclude by discussing the challenges of Bayesian model choice and future directions that promise to improve the approximation of marginal likelihoods and Bayesian phylogenetics as a whole. [Marginal likelihood; model choice; phylogenetics.]</description><identifier>ISSN: 1063-5157</identifier><identifier>EISSN: 1076-836X</identifier><identifier>DOI: 10.1093/sysbio/syz003</identifier><identifier>PMID: 30668834</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Classification - methods ; Likelihood Functions ; Phylogeny ; Regular ; REGULAR ARTICLES</subject><ispartof>Systematic biology, 2019-09, Vol.68 (5), p.681-697</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Systematic Biologists.</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Systematic Biologists. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-70f5e836e33cf86702ccfb5f96187e5030833449d293523ab6ea545b4c6941873</citedby><cites>FETCH-LOGICAL-c409t-70f5e836e33cf86702ccfb5f96187e5030833449d293523ab6ea545b4c6941873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26770388$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26770388$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30668834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gascuel, Olivier</contributor><creatorcontrib>Oaks, Jamie R.</creatorcontrib><creatorcontrib>Cobb, Kerry A.</creatorcontrib><creatorcontrib>Minin, Vladimir N.</creatorcontrib><creatorcontrib>Leaché, Adam D.</creatorcontrib><title>Marginal Likelihoods in Phylogenetics: A Review of Methods and Applications</title><title>Systematic biology</title><addtitle>Syst Biol</addtitle><description>By providing a framework of accounting for the shared ancestry inherent to all life, phylogenetics is becoming the statistical foundation of biology. The importance of model choice continues to grow as phylogenetic models continue to increase in complexity to better capture micro- and macroevolutionary processes. In a Bayesian framework, the marginal likelihood is how data update our prior beliefs about models, which gives us an intuitive measure of comparing model fit that is grounded in probability theory. Given the rapid increase in the number and complexity of phylogenetic models, methods for approximating marginal likelihoods are increasingly important. Here, we try to provide an intuitive description of marginal likelihoods and why they are important in Bayesian model testing. We also categorize and review methods for estimating marginal likelihoods of phylogenetic models, highlighting several recent methods that provide well-behaved estimates. Furthermore, we review some empirical studies that demonstrate how marginal likelihoods can be used to learn about models of evolution frombiological data.We discuss promising alternatives that cancomplement marginal likelihoods for Bayesian model choice, including posterior-predictive methods. Using simulations, we find one alternative method based on approximate-Bayesian computation to be biased. We conclude by discussing the challenges of Bayesian model choice and future directions that promise to improve the approximation of marginal likelihoods and Bayesian phylogenetics as a whole. [Marginal likelihood; model choice; phylogenetics.]</description><subject>Classification - methods</subject><subject>Likelihood Functions</subject><subject>Phylogeny</subject><subject>Regular</subject><subject>REGULAR ARTICLES</subject><issn>1063-5157</issn><issn>1076-836X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1LAzEQhoMoVqtHj0ovgpfVZCcfm4sgxS-o6EHBW8im2TZ1u6nJVqi_3pStRU8zMA_vOzwInRB8SbCEq7iKpfNpfGMMO-iAYMGzAvj77nrnkDHCRA8dxjjDmBDOyD7qAea8KIAeoPMnHSau0fVg5D5s7abej-PANYOX6ar2E9vY1pl4hPYqXUd7vJl99HZ3-zp8yEbP94_Dm1FmKJZtJnDFbOq2AKYquMC5MVXJKslJISzDgAsASuU4l8By0CW3mlFWUsMlTQj00XWXu1iWczs2tmmDrtUiuLkOK-W1U_8vjZuqif9SqYtQVqSAi01A8J9LG1s1d9HYutaN9cuociIkBZEnc32UdagJPsZgq20NwWqtVnVqVac28Wd_f9vSvy4TcNoBs9j6sL3nXAgMifgBdS-ANg</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Oaks, Jamie R.</creator><creator>Cobb, Kerry A.</creator><creator>Minin, Vladimir N.</creator><creator>Leaché, Adam D.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190901</creationdate><title>Marginal Likelihoods in Phylogenetics</title><author>Oaks, Jamie R. ; Cobb, Kerry A. ; Minin, Vladimir N. ; Leaché, Adam D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-70f5e836e33cf86702ccfb5f96187e5030833449d293523ab6ea545b4c6941873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification - methods</topic><topic>Likelihood Functions</topic><topic>Phylogeny</topic><topic>Regular</topic><topic>REGULAR ARTICLES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oaks, Jamie R.</creatorcontrib><creatorcontrib>Cobb, Kerry A.</creatorcontrib><creatorcontrib>Minin, Vladimir N.</creatorcontrib><creatorcontrib>Leaché, Adam D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Systematic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oaks, Jamie R.</au><au>Cobb, Kerry A.</au><au>Minin, Vladimir N.</au><au>Leaché, Adam D.</au><au>Gascuel, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marginal Likelihoods in Phylogenetics: A Review of Methods and Applications</atitle><jtitle>Systematic biology</jtitle><addtitle>Syst Biol</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>68</volume><issue>5</issue><spage>681</spage><epage>697</epage><pages>681-697</pages><issn>1063-5157</issn><eissn>1076-836X</eissn><abstract>By providing a framework of accounting for the shared ancestry inherent to all life, phylogenetics is becoming the statistical foundation of biology. The importance of model choice continues to grow as phylogenetic models continue to increase in complexity to better capture micro- and macroevolutionary processes. In a Bayesian framework, the marginal likelihood is how data update our prior beliefs about models, which gives us an intuitive measure of comparing model fit that is grounded in probability theory. Given the rapid increase in the number and complexity of phylogenetic models, methods for approximating marginal likelihoods are increasingly important. Here, we try to provide an intuitive description of marginal likelihoods and why they are important in Bayesian model testing. We also categorize and review methods for estimating marginal likelihoods of phylogenetic models, highlighting several recent methods that provide well-behaved estimates. Furthermore, we review some empirical studies that demonstrate how marginal likelihoods can be used to learn about models of evolution frombiological data.We discuss promising alternatives that cancomplement marginal likelihoods for Bayesian model choice, including posterior-predictive methods. Using simulations, we find one alternative method based on approximate-Bayesian computation to be biased. We conclude by discussing the challenges of Bayesian model choice and future directions that promise to improve the approximation of marginal likelihoods and Bayesian phylogenetics as a whole. [Marginal likelihood; model choice; phylogenetics.]</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30668834</pmid><doi>10.1093/sysbio/syz003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-5157
ispartof Systematic biology, 2019-09, Vol.68 (5), p.681-697
issn 1063-5157
1076-836X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6701458
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals Current; Alma/SFX Local Collection
subjects Classification - methods
Likelihood Functions
Phylogeny
Regular
REGULAR ARTICLES
title Marginal Likelihoods in Phylogenetics: A Review of Methods and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marginal%20Likelihoods%20in%20Phylogenetics:%20A%20Review%20of%20Methods%20and%20Applications&rft.jtitle=Systematic%20biology&rft.au=Oaks,%20Jamie%20R.&rft.date=2019-09-01&rft.volume=68&rft.issue=5&rft.spage=681&rft.epage=697&rft.pages=681-697&rft.issn=1063-5157&rft.eissn=1076-836X&rft_id=info:doi/10.1093/sysbio/syz003&rft_dat=%3Cjstor_pubme%3E26770388%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179437209&rft_id=info:pmid/30668834&rft_jstor_id=26770388&rfr_iscdi=true