An Enhanced Lightning Attachment Procedure Optimization with Quasi-Opposition-Based Learning and Dimensional Search Strategies

Lightning attachment procedure optimization (LAPO) is a new global optimization algorithm inspired by the attachment procedure of lightning in nature. However, similar to other metaheuristic algorithms, LAPO also has its own disadvantages. To obtain better global searching ability, an enhanced versi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2019, Vol.2019 (2019), p.1-24
Hauptverfasser: Zheng, Tongyi, Luo, Weili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 2019
container_start_page 1
container_title Computational intelligence and neuroscience
container_volume 2019
creator Zheng, Tongyi
Luo, Weili
description Lightning attachment procedure optimization (LAPO) is a new global optimization algorithm inspired by the attachment procedure of lightning in nature. However, similar to other metaheuristic algorithms, LAPO also has its own disadvantages. To obtain better global searching ability, an enhanced version of LAPO called ELAPO has been proposed in this paper. A quasi-opposition-based learning strategy is incorporated to improve both exploration and exploitation abilities by considering an estimate and its opposite simultaneously. Moreover, a dimensional search enhancement strategy is proposed to intensify the exploitation ability of the algorithm. 32 benchmark functions including unimodal, multimodal, and CEC 2014 functions are utilized to test the effectiveness of the proposed algorithm. Numerical results indicate that ELAPO can provide better or competitive performance compared with the basic LAPO and other five state-of-the-art optimization algorithms.
doi_str_mv 10.1155/2019/1589303
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6701370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601028053</galeid><sourcerecordid>A601028053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-d59af9a6827108eecd2670eb259a28ffc003641b7001651a0aff4ecee528c4a3</originalsourceid><addsrcrecordid>eNqNkUtv1DAURiMEoqWwY40isUEqoX7EdrJBGkp5SCMNqN1bd5ybxFXGmdoOVVnw23GYYQqsWNnyd3Sur74se07JG0qFOGOE1mdUVDUn_EF2TGWlCsEUf3i4S3GUPQnhmhChBGGPsyNOS6kElcfZj4XLL1wPzmCTL23XR2ddly9iBNNv0MX8ix9TNnnMV9toN_Y7RDu6_NbGPv86QbDFarsdg51fi3cQZg-C_6UB1-TvbdKEFMKQX6bA9Pll9BCxsxieZo9aGAI-258n2dWHi6vzT8Vy9fHz-WJZmLKuY9GIGtoaZMUUJRWiaZhUBNcsvbOqbQ0hXJZ0rQihUlAg0LYlGkTBKlMCP8ne7rTbab3BxqS9PAx66-0G_J0eweq_E2d73Y3fdJpCuSJJ8Gov8OPNhCHqjQ0GhwEcjlPQjFWcEiWFSujLf9DrcfJp-5lSpSwFVfKe6mBAbV07prlmluqFJJSwigieqNc7yvgxBI_t4cuU6Ll9Pbev9-0n_MWfax7g33Un4HQH9NY1cGv_U4eJwRbuacpqXlL-EwomwiY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274645176</pqid></control><display><type>article</type><title>An Enhanced Lightning Attachment Procedure Optimization with Quasi-Opposition-Based Learning and Dimensional Search Strategies</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Zheng, Tongyi ; Luo, Weili</creator><contributor>MacLennan, Bruce J. ; Bruce J MacLennan</contributor><creatorcontrib>Zheng, Tongyi ; Luo, Weili ; MacLennan, Bruce J. ; Bruce J MacLennan</creatorcontrib><description>Lightning attachment procedure optimization (LAPO) is a new global optimization algorithm inspired by the attachment procedure of lightning in nature. However, similar to other metaheuristic algorithms, LAPO also has its own disadvantages. To obtain better global searching ability, an enhanced version of LAPO called ELAPO has been proposed in this paper. A quasi-opposition-based learning strategy is incorporated to improve both exploration and exploitation abilities by considering an estimate and its opposite simultaneously. Moreover, a dimensional search enhancement strategy is proposed to intensify the exploitation ability of the algorithm. 32 benchmark functions including unimodal, multimodal, and CEC 2014 functions are utilized to test the effectiveness of the proposed algorithm. Numerical results indicate that ELAPO can provide better or competitive performance compared with the basic LAPO and other five state-of-the-art optimization algorithms.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2019/1589303</identifier><identifier>PMID: 31467516</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Analysis ; Attachment ; Benchmarking ; Biogeography ; Computer Simulation ; Engineering ; Exploitation ; Exploration ; Genetic algorithms ; Global optimization ; Heuristic methods ; Intelligence ; Learning ; Learning - physiology ; Lightning ; Mathematical optimization ; Mutation ; Optimization algorithms ; Search Engine</subject><ispartof>Computational intelligence and neuroscience, 2019, Vol.2019 (2019), p.1-24</ispartof><rights>Copyright © 2019 Tongyi Zheng and Weili Luo.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2019 Tongyi Zheng and Weili Luo. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2019 Tongyi Zheng and Weili Luo. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-d59af9a6827108eecd2670eb259a28ffc003641b7001651a0aff4ecee528c4a3</citedby><cites>FETCH-LOGICAL-c499t-d59af9a6827108eecd2670eb259a28ffc003641b7001651a0aff4ecee528c4a3</cites><orcidid>0000-0001-5426-7788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6701370/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6701370/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,4025,27928,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31467516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>MacLennan, Bruce J.</contributor><contributor>Bruce J MacLennan</contributor><creatorcontrib>Zheng, Tongyi</creatorcontrib><creatorcontrib>Luo, Weili</creatorcontrib><title>An Enhanced Lightning Attachment Procedure Optimization with Quasi-Opposition-Based Learning and Dimensional Search Strategies</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>Lightning attachment procedure optimization (LAPO) is a new global optimization algorithm inspired by the attachment procedure of lightning in nature. However, similar to other metaheuristic algorithms, LAPO also has its own disadvantages. To obtain better global searching ability, an enhanced version of LAPO called ELAPO has been proposed in this paper. A quasi-opposition-based learning strategy is incorporated to improve both exploration and exploitation abilities by considering an estimate and its opposite simultaneously. Moreover, a dimensional search enhancement strategy is proposed to intensify the exploitation ability of the algorithm. 32 benchmark functions including unimodal, multimodal, and CEC 2014 functions are utilized to test the effectiveness of the proposed algorithm. Numerical results indicate that ELAPO can provide better or competitive performance compared with the basic LAPO and other five state-of-the-art optimization algorithms.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Attachment</subject><subject>Benchmarking</subject><subject>Biogeography</subject><subject>Computer Simulation</subject><subject>Engineering</subject><subject>Exploitation</subject><subject>Exploration</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>Heuristic methods</subject><subject>Intelligence</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Lightning</subject><subject>Mathematical optimization</subject><subject>Mutation</subject><subject>Optimization algorithms</subject><subject>Search Engine</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtv1DAURiMEoqWwY40isUEqoX7EdrJBGkp5SCMNqN1bd5ybxFXGmdoOVVnw23GYYQqsWNnyd3Sur74se07JG0qFOGOE1mdUVDUn_EF2TGWlCsEUf3i4S3GUPQnhmhChBGGPsyNOS6kElcfZj4XLL1wPzmCTL23XR2ddly9iBNNv0MX8ix9TNnnMV9toN_Y7RDu6_NbGPv86QbDFarsdg51fi3cQZg-C_6UB1-TvbdKEFMKQX6bA9Pll9BCxsxieZo9aGAI-258n2dWHi6vzT8Vy9fHz-WJZmLKuY9GIGtoaZMUUJRWiaZhUBNcsvbOqbQ0hXJZ0rQihUlAg0LYlGkTBKlMCP8ne7rTbab3BxqS9PAx66-0G_J0eweq_E2d73Y3fdJpCuSJJ8Gov8OPNhCHqjQ0GhwEcjlPQjFWcEiWFSujLf9DrcfJp-5lSpSwFVfKe6mBAbV07prlmluqFJJSwigieqNc7yvgxBI_t4cuU6Ll9Pbev9-0n_MWfax7g33Un4HQH9NY1cGv_U4eJwRbuacpqXlL-EwomwiY</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zheng, Tongyi</creator><creator>Luo, Weili</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5426-7788</orcidid></search><sort><creationdate>2019</creationdate><title>An Enhanced Lightning Attachment Procedure Optimization with Quasi-Opposition-Based Learning and Dimensional Search Strategies</title><author>Zheng, Tongyi ; Luo, Weili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-d59af9a6827108eecd2670eb259a28ffc003641b7001651a0aff4ecee528c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Attachment</topic><topic>Benchmarking</topic><topic>Biogeography</topic><topic>Computer Simulation</topic><topic>Engineering</topic><topic>Exploitation</topic><topic>Exploration</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>Heuristic methods</topic><topic>Intelligence</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Lightning</topic><topic>Mathematical optimization</topic><topic>Mutation</topic><topic>Optimization algorithms</topic><topic>Search Engine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Tongyi</creatorcontrib><creatorcontrib>Luo, Weili</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Tongyi</au><au>Luo, Weili</au><au>MacLennan, Bruce J.</au><au>Bruce J MacLennan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Lightning Attachment Procedure Optimization with Quasi-Opposition-Based Learning and Dimensional Search Strategies</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Lightning attachment procedure optimization (LAPO) is a new global optimization algorithm inspired by the attachment procedure of lightning in nature. However, similar to other metaheuristic algorithms, LAPO also has its own disadvantages. To obtain better global searching ability, an enhanced version of LAPO called ELAPO has been proposed in this paper. A quasi-opposition-based learning strategy is incorporated to improve both exploration and exploitation abilities by considering an estimate and its opposite simultaneously. Moreover, a dimensional search enhancement strategy is proposed to intensify the exploitation ability of the algorithm. 32 benchmark functions including unimodal, multimodal, and CEC 2014 functions are utilized to test the effectiveness of the proposed algorithm. Numerical results indicate that ELAPO can provide better or competitive performance compared with the basic LAPO and other five state-of-the-art optimization algorithms.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>31467516</pmid><doi>10.1155/2019/1589303</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-5426-7788</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2019, Vol.2019 (2019), p.1-24
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6701370
source MEDLINE; PubMed Central Open Access; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Algorithms
Analysis
Attachment
Benchmarking
Biogeography
Computer Simulation
Engineering
Exploitation
Exploration
Genetic algorithms
Global optimization
Heuristic methods
Intelligence
Learning
Learning - physiology
Lightning
Mathematical optimization
Mutation
Optimization algorithms
Search Engine
title An Enhanced Lightning Attachment Procedure Optimization with Quasi-Opposition-Based Learning and Dimensional Search Strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Lightning%20Attachment%20Procedure%20Optimization%20with%20Quasi-Opposition-Based%20Learning%20and%20Dimensional%20Search%20Strategies&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Zheng,%20Tongyi&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2019/1589303&rft_dat=%3Cgale_pubme%3EA601028053%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2274645176&rft_id=info:pmid/31467516&rft_galeid=A601028053&rfr_iscdi=true