Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells

Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-08, Vol.9 (1), p.12076-10, Article 12076
Hauptverfasser: Beugels, Jip, Molin, Daniel G. M., Ophelders, Daan R. M. G., Rutten, Teun, Kessels, Lilian, Kloosterboer, Nico, Grzymala, Andrzej A. Piatkowski de, Kramer, Boris W. W., van der Hulst, René R. W. J., Wolfs, Tim G. A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 12076
container_title Scientific reports
container_volume 9
creator Beugels, Jip
Molin, Daniel G. M.
Ophelders, Daan R. M. G.
Rutten, Teun
Kessels, Lilian
Kloosterboer, Nico
Grzymala, Andrzej A. Piatkowski de
Kramer, Boris W. W.
van der Hulst, René R. W. J.
Wolfs, Tim G. A. M.
description Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed in vitro and in vivo . Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both in vitro and in vivo .
doi_str_mv 10.1038/s41598-019-48369-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6700204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336981937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-231f3aa38e20d73876334fff94165a63cb6ee30fbef9d22f662262655cd0df283</originalsourceid><addsrcrecordid>eNp9UcFO3DAQtaqisqL8QA9VJC69pLXHiZNckBCiLdJKvZReLa8z3jVK4mAnIP6eWZbCwgFfbHnevHlvHmNfBP8uuKx_pEKUTZ1z0eRFLVWT331gC-BFmYME-Lj3PmTHKV1zOiU0hWg-sUMpCqiUFAv276JDO0VvTZelyfdzZyYfhmyMoQ8TpmzaYGaGtQ9rHLzNRvocJk_o4DLT-jEkzFuM_hZbIsA-s9h16TM7cKZLePx0H7Grnxd_z3_nyz-_Ls_PlrkthZhInnDSGFkj8LaSNWmShXOOZKrSKGlXClFyt0LXtABOKQAFqixty1sHtTxipzvecV712FrSFk2nx-h7E-91MF6_rgx-o9fhVquKc9oQEXx7IojhZsY06d6nrQUzYJiTBkm7rUUjK4KevIFehzkOZE8DVGUDolBbRbBD2RhSiuiexQiut8npXXKaktOPyek7avq6b-O55X9OBJA7QKLSsMb4Mvsd2gf52KX3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275921468</pqid></control><display><type>article</type><title>Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Beugels, Jip ; Molin, Daniel G. M. ; Ophelders, Daan R. M. G. ; Rutten, Teun ; Kessels, Lilian ; Kloosterboer, Nico ; Grzymala, Andrzej A. Piatkowski de ; Kramer, Boris W. W. ; van der Hulst, René R. W. J. ; Wolfs, Tim G. A. M.</creator><creatorcontrib>Beugels, Jip ; Molin, Daniel G. M. ; Ophelders, Daan R. M. G. ; Rutten, Teun ; Kessels, Lilian ; Kloosterboer, Nico ; Grzymala, Andrzej A. Piatkowski de ; Kramer, Boris W. W. ; van der Hulst, René R. W. J. ; Wolfs, Tim G. A. M.</creatorcontrib><description>Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed in vitro and in vivo . Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both in vitro and in vivo .</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-48369-w</identifier><identifier>PMID: 31427631</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/106 ; 13/21 ; 631/136/16 ; 631/532/2074 ; 692/308/2171 ; 82/80 ; Adipocytes - radiation effects ; Angiogenesis ; Animals ; Apoptosis - genetics ; Apoptosis - radiation effects ; Autografts ; Cell death ; Cell Differentiation - radiation effects ; Cells, Cultured ; Chick Embryo ; Culture Media, Conditioned - pharmacology ; Electric Stimulation ; Electrical stimuli ; Enzyme-linked immunosorbent assay ; Gene Expression Regulation, Developmental - radiation effects ; Humanities and Social Sciences ; Humans ; Ischemia ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - radiation effects ; Monocyte chemoattractant protein 1 ; Morphogenesis - genetics ; Morphogenesis - radiation effects ; multidisciplinary ; Neovascularization, Physiologic - physiology ; Neovascularization, Physiologic - radiation effects ; Progenitor cells ; Protein arrays ; Proteins ; Reconstructive surgery ; Science ; Science (multidisciplinary) ; Stem cells ; Stem Cells - radiation effects ; Tissue inhibitor of metalloproteinase 1 ; Transplants - growth &amp; development ; Transplants - radiation effects ; Vascular endothelial growth factor</subject><ispartof>Scientific reports, 2019-08, Vol.9 (1), p.12076-10, Article 12076</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-231f3aa38e20d73876334fff94165a63cb6ee30fbef9d22f662262655cd0df283</citedby><cites>FETCH-LOGICAL-c511t-231f3aa38e20d73876334fff94165a63cb6ee30fbef9d22f662262655cd0df283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700204/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700204/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31427631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beugels, Jip</creatorcontrib><creatorcontrib>Molin, Daniel G. M.</creatorcontrib><creatorcontrib>Ophelders, Daan R. M. G.</creatorcontrib><creatorcontrib>Rutten, Teun</creatorcontrib><creatorcontrib>Kessels, Lilian</creatorcontrib><creatorcontrib>Kloosterboer, Nico</creatorcontrib><creatorcontrib>Grzymala, Andrzej A. Piatkowski de</creatorcontrib><creatorcontrib>Kramer, Boris W. W.</creatorcontrib><creatorcontrib>van der Hulst, René R. W. J.</creatorcontrib><creatorcontrib>Wolfs, Tim G. A. M.</creatorcontrib><title>Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed in vitro and in vivo . Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both in vitro and in vivo .</description><subject>13/100</subject><subject>13/106</subject><subject>13/21</subject><subject>631/136/16</subject><subject>631/532/2074</subject><subject>692/308/2171</subject><subject>82/80</subject><subject>Adipocytes - radiation effects</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Apoptosis - genetics</subject><subject>Apoptosis - radiation effects</subject><subject>Autografts</subject><subject>Cell death</subject><subject>Cell Differentiation - radiation effects</subject><subject>Cells, Cultured</subject><subject>Chick Embryo</subject><subject>Culture Media, Conditioned - pharmacology</subject><subject>Electric Stimulation</subject><subject>Electrical stimuli</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Gene Expression Regulation, Developmental - radiation effects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - radiation effects</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Morphogenesis - genetics</subject><subject>Morphogenesis - radiation effects</subject><subject>multidisciplinary</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Neovascularization, Physiologic - radiation effects</subject><subject>Progenitor cells</subject><subject>Protein arrays</subject><subject>Proteins</subject><subject>Reconstructive surgery</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Stem Cells - radiation effects</subject><subject>Tissue inhibitor of metalloproteinase 1</subject><subject>Transplants - growth &amp; development</subject><subject>Transplants - radiation effects</subject><subject>Vascular endothelial growth factor</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UcFO3DAQtaqisqL8QA9VJC69pLXHiZNckBCiLdJKvZReLa8z3jVK4mAnIP6eWZbCwgFfbHnevHlvHmNfBP8uuKx_pEKUTZ1z0eRFLVWT331gC-BFmYME-Lj3PmTHKV1zOiU0hWg-sUMpCqiUFAv276JDO0VvTZelyfdzZyYfhmyMoQ8TpmzaYGaGtQ9rHLzNRvocJk_o4DLT-jEkzFuM_hZbIsA-s9h16TM7cKZLePx0H7Grnxd_z3_nyz-_Ls_PlrkthZhInnDSGFkj8LaSNWmShXOOZKrSKGlXClFyt0LXtABOKQAFqixty1sHtTxipzvecV712FrSFk2nx-h7E-91MF6_rgx-o9fhVquKc9oQEXx7IojhZsY06d6nrQUzYJiTBkm7rUUjK4KevIFehzkOZE8DVGUDolBbRbBD2RhSiuiexQiut8npXXKaktOPyek7avq6b-O55X9OBJA7QKLSsMb4Mvsd2gf52KX3</recordid><startdate>20190819</startdate><enddate>20190819</enddate><creator>Beugels, Jip</creator><creator>Molin, Daniel G. M.</creator><creator>Ophelders, Daan R. M. G.</creator><creator>Rutten, Teun</creator><creator>Kessels, Lilian</creator><creator>Kloosterboer, Nico</creator><creator>Grzymala, Andrzej A. Piatkowski de</creator><creator>Kramer, Boris W. W.</creator><creator>van der Hulst, René R. W. J.</creator><creator>Wolfs, Tim G. A. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190819</creationdate><title>Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells</title><author>Beugels, Jip ; Molin, Daniel G. M. ; Ophelders, Daan R. M. G. ; Rutten, Teun ; Kessels, Lilian ; Kloosterboer, Nico ; Grzymala, Andrzej A. Piatkowski de ; Kramer, Boris W. W. ; van der Hulst, René R. W. J. ; Wolfs, Tim G. A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-231f3aa38e20d73876334fff94165a63cb6ee30fbef9d22f662262655cd0df283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/100</topic><topic>13/106</topic><topic>13/21</topic><topic>631/136/16</topic><topic>631/532/2074</topic><topic>692/308/2171</topic><topic>82/80</topic><topic>Adipocytes - radiation effects</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Apoptosis - genetics</topic><topic>Apoptosis - radiation effects</topic><topic>Autografts</topic><topic>Cell death</topic><topic>Cell Differentiation - radiation effects</topic><topic>Cells, Cultured</topic><topic>Chick Embryo</topic><topic>Culture Media, Conditioned - pharmacology</topic><topic>Electric Stimulation</topic><topic>Electrical stimuli</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Gene Expression Regulation, Developmental - radiation effects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - radiation effects</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Morphogenesis - genetics</topic><topic>Morphogenesis - radiation effects</topic><topic>multidisciplinary</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Neovascularization, Physiologic - radiation effects</topic><topic>Progenitor cells</topic><topic>Protein arrays</topic><topic>Proteins</topic><topic>Reconstructive surgery</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Stem Cells - radiation effects</topic><topic>Tissue inhibitor of metalloproteinase 1</topic><topic>Transplants - growth &amp; development</topic><topic>Transplants - radiation effects</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beugels, Jip</creatorcontrib><creatorcontrib>Molin, Daniel G. M.</creatorcontrib><creatorcontrib>Ophelders, Daan R. M. G.</creatorcontrib><creatorcontrib>Rutten, Teun</creatorcontrib><creatorcontrib>Kessels, Lilian</creatorcontrib><creatorcontrib>Kloosterboer, Nico</creatorcontrib><creatorcontrib>Grzymala, Andrzej A. Piatkowski de</creatorcontrib><creatorcontrib>Kramer, Boris W. W.</creatorcontrib><creatorcontrib>van der Hulst, René R. W. J.</creatorcontrib><creatorcontrib>Wolfs, Tim G. A. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beugels, Jip</au><au>Molin, Daniel G. M.</au><au>Ophelders, Daan R. M. G.</au><au>Rutten, Teun</au><au>Kessels, Lilian</au><au>Kloosterboer, Nico</au><au>Grzymala, Andrzej A. Piatkowski de</au><au>Kramer, Boris W. W.</au><au>van der Hulst, René R. W. J.</au><au>Wolfs, Tim G. A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-08-19</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>12076</spage><epage>10</epage><pages>12076-10</pages><artnum>12076</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed in vitro and in vivo . Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both in vitro and in vivo .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31427631</pmid><doi>10.1038/s41598-019-48369-w</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-08, Vol.9 (1), p.12076-10, Article 12076
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6700204
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 13/100
13/106
13/21
631/136/16
631/532/2074
692/308/2171
82/80
Adipocytes - radiation effects
Angiogenesis
Animals
Apoptosis - genetics
Apoptosis - radiation effects
Autografts
Cell death
Cell Differentiation - radiation effects
Cells, Cultured
Chick Embryo
Culture Media, Conditioned - pharmacology
Electric Stimulation
Electrical stimuli
Enzyme-linked immunosorbent assay
Gene Expression Regulation, Developmental - radiation effects
Humanities and Social Sciences
Humans
Ischemia
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - radiation effects
Monocyte chemoattractant protein 1
Morphogenesis - genetics
Morphogenesis - radiation effects
multidisciplinary
Neovascularization, Physiologic - physiology
Neovascularization, Physiologic - radiation effects
Progenitor cells
Protein arrays
Proteins
Reconstructive surgery
Science
Science (multidisciplinary)
Stem cells
Stem Cells - radiation effects
Tissue inhibitor of metalloproteinase 1
Transplants - growth & development
Transplants - radiation effects
Vascular endothelial growth factor
title Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20stimulation%20promotes%20the%20angiogenic%20potential%20of%20adipose-derived%20stem%20cells&rft.jtitle=Scientific%20reports&rft.au=Beugels,%20Jip&rft.date=2019-08-19&rft.volume=9&rft.issue=1&rft.spage=12076&rft.epage=10&rft.pages=12076-10&rft.artnum=12076&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-48369-w&rft_dat=%3Cproquest_pubme%3E2336981937%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275921468&rft_id=info:pmid/31427631&rfr_iscdi=true