Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells
Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of E...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-08, Vol.9 (1), p.12076-10, Article 12076 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 12076 |
container_title | Scientific reports |
container_volume | 9 |
creator | Beugels, Jip Molin, Daniel G. M. Ophelders, Daan R. M. G. Rutten, Teun Kessels, Lilian Kloosterboer, Nico Grzymala, Andrzej A. Piatkowski de Kramer, Boris W. W. van der Hulst, René R. W. J. Wolfs, Tim G. A. M. |
description | Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed
in vitro
and
in vivo
. Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both
in vitro
and
in vivo
. |
doi_str_mv | 10.1038/s41598-019-48369-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6700204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336981937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-231f3aa38e20d73876334fff94165a63cb6ee30fbef9d22f662262655cd0df283</originalsourceid><addsrcrecordid>eNp9UcFO3DAQtaqisqL8QA9VJC69pLXHiZNckBCiLdJKvZReLa8z3jVK4mAnIP6eWZbCwgFfbHnevHlvHmNfBP8uuKx_pEKUTZ1z0eRFLVWT331gC-BFmYME-Lj3PmTHKV1zOiU0hWg-sUMpCqiUFAv276JDO0VvTZelyfdzZyYfhmyMoQ8TpmzaYGaGtQ9rHLzNRvocJk_o4DLT-jEkzFuM_hZbIsA-s9h16TM7cKZLePx0H7Grnxd_z3_nyz-_Ls_PlrkthZhInnDSGFkj8LaSNWmShXOOZKrSKGlXClFyt0LXtABOKQAFqixty1sHtTxipzvecV712FrSFk2nx-h7E-91MF6_rgx-o9fhVquKc9oQEXx7IojhZsY06d6nrQUzYJiTBkm7rUUjK4KevIFehzkOZE8DVGUDolBbRbBD2RhSiuiexQiut8npXXKaktOPyek7avq6b-O55X9OBJA7QKLSsMb4Mvsd2gf52KX3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275921468</pqid></control><display><type>article</type><title>Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Beugels, Jip ; Molin, Daniel G. M. ; Ophelders, Daan R. M. G. ; Rutten, Teun ; Kessels, Lilian ; Kloosterboer, Nico ; Grzymala, Andrzej A. Piatkowski de ; Kramer, Boris W. W. ; van der Hulst, René R. W. J. ; Wolfs, Tim G. A. M.</creator><creatorcontrib>Beugels, Jip ; Molin, Daniel G. M. ; Ophelders, Daan R. M. G. ; Rutten, Teun ; Kessels, Lilian ; Kloosterboer, Nico ; Grzymala, Andrzej A. Piatkowski de ; Kramer, Boris W. W. ; van der Hulst, René R. W. J. ; Wolfs, Tim G. A. M.</creatorcontrib><description>Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed
in vitro
and
in vivo
. Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both
in vitro
and
in vivo
.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-48369-w</identifier><identifier>PMID: 31427631</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/106 ; 13/21 ; 631/136/16 ; 631/532/2074 ; 692/308/2171 ; 82/80 ; Adipocytes - radiation effects ; Angiogenesis ; Animals ; Apoptosis - genetics ; Apoptosis - radiation effects ; Autografts ; Cell death ; Cell Differentiation - radiation effects ; Cells, Cultured ; Chick Embryo ; Culture Media, Conditioned - pharmacology ; Electric Stimulation ; Electrical stimuli ; Enzyme-linked immunosorbent assay ; Gene Expression Regulation, Developmental - radiation effects ; Humanities and Social Sciences ; Humans ; Ischemia ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - radiation effects ; Monocyte chemoattractant protein 1 ; Morphogenesis - genetics ; Morphogenesis - radiation effects ; multidisciplinary ; Neovascularization, Physiologic - physiology ; Neovascularization, Physiologic - radiation effects ; Progenitor cells ; Protein arrays ; Proteins ; Reconstructive surgery ; Science ; Science (multidisciplinary) ; Stem cells ; Stem Cells - radiation effects ; Tissue inhibitor of metalloproteinase 1 ; Transplants - growth & development ; Transplants - radiation effects ; Vascular endothelial growth factor</subject><ispartof>Scientific reports, 2019-08, Vol.9 (1), p.12076-10, Article 12076</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-231f3aa38e20d73876334fff94165a63cb6ee30fbef9d22f662262655cd0df283</citedby><cites>FETCH-LOGICAL-c511t-231f3aa38e20d73876334fff94165a63cb6ee30fbef9d22f662262655cd0df283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700204/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700204/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31427631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beugels, Jip</creatorcontrib><creatorcontrib>Molin, Daniel G. M.</creatorcontrib><creatorcontrib>Ophelders, Daan R. M. G.</creatorcontrib><creatorcontrib>Rutten, Teun</creatorcontrib><creatorcontrib>Kessels, Lilian</creatorcontrib><creatorcontrib>Kloosterboer, Nico</creatorcontrib><creatorcontrib>Grzymala, Andrzej A. Piatkowski de</creatorcontrib><creatorcontrib>Kramer, Boris W. W.</creatorcontrib><creatorcontrib>van der Hulst, René R. W. J.</creatorcontrib><creatorcontrib>Wolfs, Tim G. A. M.</creatorcontrib><title>Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed
in vitro
and
in vivo
. Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both
in vitro
and
in vivo
.</description><subject>13/100</subject><subject>13/106</subject><subject>13/21</subject><subject>631/136/16</subject><subject>631/532/2074</subject><subject>692/308/2171</subject><subject>82/80</subject><subject>Adipocytes - radiation effects</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Apoptosis - genetics</subject><subject>Apoptosis - radiation effects</subject><subject>Autografts</subject><subject>Cell death</subject><subject>Cell Differentiation - radiation effects</subject><subject>Cells, Cultured</subject><subject>Chick Embryo</subject><subject>Culture Media, Conditioned - pharmacology</subject><subject>Electric Stimulation</subject><subject>Electrical stimuli</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Gene Expression Regulation, Developmental - radiation effects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - radiation effects</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Morphogenesis - genetics</subject><subject>Morphogenesis - radiation effects</subject><subject>multidisciplinary</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Neovascularization, Physiologic - radiation effects</subject><subject>Progenitor cells</subject><subject>Protein arrays</subject><subject>Proteins</subject><subject>Reconstructive surgery</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Stem Cells - radiation effects</subject><subject>Tissue inhibitor of metalloproteinase 1</subject><subject>Transplants - growth & development</subject><subject>Transplants - radiation effects</subject><subject>Vascular endothelial growth factor</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UcFO3DAQtaqisqL8QA9VJC69pLXHiZNckBCiLdJKvZReLa8z3jVK4mAnIP6eWZbCwgFfbHnevHlvHmNfBP8uuKx_pEKUTZ1z0eRFLVWT331gC-BFmYME-Lj3PmTHKV1zOiU0hWg-sUMpCqiUFAv276JDO0VvTZelyfdzZyYfhmyMoQ8TpmzaYGaGtQ9rHLzNRvocJk_o4DLT-jEkzFuM_hZbIsA-s9h16TM7cKZLePx0H7Grnxd_z3_nyz-_Ls_PlrkthZhInnDSGFkj8LaSNWmShXOOZKrSKGlXClFyt0LXtABOKQAFqixty1sHtTxipzvecV712FrSFk2nx-h7E-91MF6_rgx-o9fhVquKc9oQEXx7IojhZsY06d6nrQUzYJiTBkm7rUUjK4KevIFehzkOZE8DVGUDolBbRbBD2RhSiuiexQiut8npXXKaktOPyek7avq6b-O55X9OBJA7QKLSsMb4Mvsd2gf52KX3</recordid><startdate>20190819</startdate><enddate>20190819</enddate><creator>Beugels, Jip</creator><creator>Molin, Daniel G. M.</creator><creator>Ophelders, Daan R. M. G.</creator><creator>Rutten, Teun</creator><creator>Kessels, Lilian</creator><creator>Kloosterboer, Nico</creator><creator>Grzymala, Andrzej A. Piatkowski de</creator><creator>Kramer, Boris W. W.</creator><creator>van der Hulst, René R. W. J.</creator><creator>Wolfs, Tim G. A. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190819</creationdate><title>Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells</title><author>Beugels, Jip ; Molin, Daniel G. M. ; Ophelders, Daan R. M. G. ; Rutten, Teun ; Kessels, Lilian ; Kloosterboer, Nico ; Grzymala, Andrzej A. Piatkowski de ; Kramer, Boris W. W. ; van der Hulst, René R. W. J. ; Wolfs, Tim G. A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-231f3aa38e20d73876334fff94165a63cb6ee30fbef9d22f662262655cd0df283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/100</topic><topic>13/106</topic><topic>13/21</topic><topic>631/136/16</topic><topic>631/532/2074</topic><topic>692/308/2171</topic><topic>82/80</topic><topic>Adipocytes - radiation effects</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Apoptosis - genetics</topic><topic>Apoptosis - radiation effects</topic><topic>Autografts</topic><topic>Cell death</topic><topic>Cell Differentiation - radiation effects</topic><topic>Cells, Cultured</topic><topic>Chick Embryo</topic><topic>Culture Media, Conditioned - pharmacology</topic><topic>Electric Stimulation</topic><topic>Electrical stimuli</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Gene Expression Regulation, Developmental - radiation effects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - radiation effects</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Morphogenesis - genetics</topic><topic>Morphogenesis - radiation effects</topic><topic>multidisciplinary</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Neovascularization, Physiologic - radiation effects</topic><topic>Progenitor cells</topic><topic>Protein arrays</topic><topic>Proteins</topic><topic>Reconstructive surgery</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Stem Cells - radiation effects</topic><topic>Tissue inhibitor of metalloproteinase 1</topic><topic>Transplants - growth & development</topic><topic>Transplants - radiation effects</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beugels, Jip</creatorcontrib><creatorcontrib>Molin, Daniel G. M.</creatorcontrib><creatorcontrib>Ophelders, Daan R. M. G.</creatorcontrib><creatorcontrib>Rutten, Teun</creatorcontrib><creatorcontrib>Kessels, Lilian</creatorcontrib><creatorcontrib>Kloosterboer, Nico</creatorcontrib><creatorcontrib>Grzymala, Andrzej A. Piatkowski de</creatorcontrib><creatorcontrib>Kramer, Boris W. W.</creatorcontrib><creatorcontrib>van der Hulst, René R. W. J.</creatorcontrib><creatorcontrib>Wolfs, Tim G. A. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beugels, Jip</au><au>Molin, Daniel G. M.</au><au>Ophelders, Daan R. M. G.</au><au>Rutten, Teun</au><au>Kessels, Lilian</au><au>Kloosterboer, Nico</au><au>Grzymala, Andrzej A. Piatkowski de</au><au>Kramer, Boris W. W.</au><au>van der Hulst, René R. W. J.</au><au>Wolfs, Tim G. A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-08-19</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>12076</spage><epage>10</epage><pages>12076-10</pages><artnum>12076</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed
in vitro
and
in vivo
. Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both
in vitro
and
in vivo
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31427631</pmid><doi>10.1038/s41598-019-48369-w</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-08, Vol.9 (1), p.12076-10, Article 12076 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6700204 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 13/100 13/106 13/21 631/136/16 631/532/2074 692/308/2171 82/80 Adipocytes - radiation effects Angiogenesis Animals Apoptosis - genetics Apoptosis - radiation effects Autografts Cell death Cell Differentiation - radiation effects Cells, Cultured Chick Embryo Culture Media, Conditioned - pharmacology Electric Stimulation Electrical stimuli Enzyme-linked immunosorbent assay Gene Expression Regulation, Developmental - radiation effects Humanities and Social Sciences Humans Ischemia Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - radiation effects Monocyte chemoattractant protein 1 Morphogenesis - genetics Morphogenesis - radiation effects multidisciplinary Neovascularization, Physiologic - physiology Neovascularization, Physiologic - radiation effects Progenitor cells Protein arrays Proteins Reconstructive surgery Science Science (multidisciplinary) Stem cells Stem Cells - radiation effects Tissue inhibitor of metalloproteinase 1 Transplants - growth & development Transplants - radiation effects Vascular endothelial growth factor |
title | Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20stimulation%20promotes%20the%20angiogenic%20potential%20of%20adipose-derived%20stem%20cells&rft.jtitle=Scientific%20reports&rft.au=Beugels,%20Jip&rft.date=2019-08-19&rft.volume=9&rft.issue=1&rft.spage=12076&rft.epage=10&rft.pages=12076-10&rft.artnum=12076&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-48369-w&rft_dat=%3Cproquest_pubme%3E2336981937%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275921468&rft_id=info:pmid/31427631&rfr_iscdi=true |