Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization

Abstract Despite large experimental and computational efforts aiming to dissect the mechanisms underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. Here, we introduce a matrix factorization framework to integrate physical and functional interaction data of ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2019-08, Vol.47 (14), p.7235-7246
Hauptverfasser: Liu, Dianbo, Davila-Velderrain, Jose, Zhang, Zhizhuo, Kellis, Manolis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7246
container_issue 14
container_start_page 7235
container_title Nucleic acids research
container_volume 47
creator Liu, Dianbo
Davila-Velderrain, Jose
Zhang, Zhizhuo
Kellis, Manolis
description Abstract Despite large experimental and computational efforts aiming to dissect the mechanisms underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. Here, we introduce a matrix factorization framework to integrate physical and functional interaction data of genomic segments. The framework was used to predict a regulatory network of chromatin interaction edges linking more than 20 000 promoters and 1.8 million enhancers across 127 human reference epigenomes, including edges that are present in any of the input datasets. Our network integrates functional evidence of correlated activity patterns from epigenomic data and physical evidence of chromatin interactions. An important contribution of this work is the representation of heterogeneous data with different qualities as networks. We show that the unbiased integration of independent data sources suggestive of regulatory interactions produces meaningful associations supported by existing functional and physical evidence, correlating with expected independent biological features.
doi_str_mv 10.1093/nar/gkz538
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6698807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkz538</oup_id><sourcerecordid>2251100933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1df020a29d6855bcdc8c6e83b47a6f067a53f8c915241aa018bfa5ba9dbc9d563</originalsourceid><addsrcrecordid>eNp9kUtr3TAQRkVIaW6TbvIDijaBUnCjhyXLm0AIfQQC3TRrMZZlR40tOZKc9ubXV5ebhnbTlQbN4cwwH0KnlHykpOXnHuL5eP8kuDpAG8olq-pWskO0IZyIipJaHaE3Kf0ghNZU1K_REadMCtLIDVqufbZjhOweLTbBpxxXk13wOAw42nGdIIe43ZW7T2_zzxDvE3YeU9bgu3UGX5qDjdYbi-3iRuvDbBPutniGHN0vPIApDvcEO-8JejXAlOzb5_cY3X7-9P3qa3Xz7cv11eVNZWqickX7gTACrO2lEqIzvVFGWsW7ugE5ENmA4IMyLRWspgCEqm4A0UHbd6btheTH6GLvXdZutr2xPkeY9BLdDHGrAzj9b8e7Oz2GRy1lqxRpiuD9syCGh9WmrGeXjJ0m8DasSTMmKCXl_rygH_aoiSGlco2XMZToXUS6RKT3ERX43d-LvaB_MinA2R4I6_I_0W9ERZ6H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251100933</pqid></control><display><type>article</type><title>Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Dianbo ; Davila-Velderrain, Jose ; Zhang, Zhizhuo ; Kellis, Manolis</creator><creatorcontrib>Liu, Dianbo ; Davila-Velderrain, Jose ; Zhang, Zhizhuo ; Kellis, Manolis</creatorcontrib><description>Abstract Despite large experimental and computational efforts aiming to dissect the mechanisms underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. Here, we introduce a matrix factorization framework to integrate physical and functional interaction data of genomic segments. The framework was used to predict a regulatory network of chromatin interaction edges linking more than 20 000 promoters and 1.8 million enhancers across 127 human reference epigenomes, including edges that are present in any of the input datasets. Our network integrates functional evidence of correlated activity patterns from epigenomic data and physical evidence of chromatin interactions. An important contribution of this work is the representation of heterogeneous data with different qualities as networks. We show that the unbiased integration of independent data sources suggestive of regulatory interactions produces meaningful associations supported by existing functional and physical evidence, correlating with expected independent biological features.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz538</identifier><identifier>PMID: 31265076</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Chromatin - genetics ; Chromatin - metabolism ; Computational Biology ; Computational Biology - methods ; Epigenomics - methods ; Gene Expression Profiling - methods ; Gene Ontology ; Gene Regulatory Networks ; Humans ; K562 Cells ; Polymorphism, Single Nucleotide ; Promoter Regions, Genetic - genetics ; Protein Interaction Mapping - methods ; Regulatory Elements, Transcriptional - genetics ; Reproducibility of Results</subject><ispartof>Nucleic acids research, 2019-08, Vol.47 (14), p.7235-7246</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1df020a29d6855bcdc8c6e83b47a6f067a53f8c915241aa018bfa5ba9dbc9d563</citedby><cites>FETCH-LOGICAL-c408t-1df020a29d6855bcdc8c6e83b47a6f067a53f8c915241aa018bfa5ba9dbc9d563</cites><orcidid>0000-0002-3042-9161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698807/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698807/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1603,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31265076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Dianbo</creatorcontrib><creatorcontrib>Davila-Velderrain, Jose</creatorcontrib><creatorcontrib>Zhang, Zhizhuo</creatorcontrib><creatorcontrib>Kellis, Manolis</creatorcontrib><title>Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Despite large experimental and computational efforts aiming to dissect the mechanisms underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. Here, we introduce a matrix factorization framework to integrate physical and functional interaction data of genomic segments. The framework was used to predict a regulatory network of chromatin interaction edges linking more than 20 000 promoters and 1.8 million enhancers across 127 human reference epigenomes, including edges that are present in any of the input datasets. Our network integrates functional evidence of correlated activity patterns from epigenomic data and physical evidence of chromatin interactions. An important contribution of this work is the representation of heterogeneous data with different qualities as networks. We show that the unbiased integration of independent data sources suggestive of regulatory interactions produces meaningful associations supported by existing functional and physical evidence, correlating with expected independent biological features.</description><subject>Algorithms</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Computational Biology</subject><subject>Computational Biology - methods</subject><subject>Epigenomics - methods</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Ontology</subject><subject>Gene Regulatory Networks</subject><subject>Humans</subject><subject>K562 Cells</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Interaction Mapping - methods</subject><subject>Regulatory Elements, Transcriptional - genetics</subject><subject>Reproducibility of Results</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtr3TAQRkVIaW6TbvIDijaBUnCjhyXLm0AIfQQC3TRrMZZlR40tOZKc9ubXV5ebhnbTlQbN4cwwH0KnlHykpOXnHuL5eP8kuDpAG8olq-pWskO0IZyIipJaHaE3Kf0ghNZU1K_REadMCtLIDVqufbZjhOweLTbBpxxXk13wOAw42nGdIIe43ZW7T2_zzxDvE3YeU9bgu3UGX5qDjdYbi-3iRuvDbBPutniGHN0vPIApDvcEO-8JejXAlOzb5_cY3X7-9P3qa3Xz7cv11eVNZWqickX7gTACrO2lEqIzvVFGWsW7ugE5ENmA4IMyLRWspgCEqm4A0UHbd6btheTH6GLvXdZutr2xPkeY9BLdDHGrAzj9b8e7Oz2GRy1lqxRpiuD9syCGh9WmrGeXjJ0m8DasSTMmKCXl_rygH_aoiSGlco2XMZToXUS6RKT3ERX43d-LvaB_MinA2R4I6_I_0W9ERZ6H</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Liu, Dianbo</creator><creator>Davila-Velderrain, Jose</creator><creator>Zhang, Zhizhuo</creator><creator>Kellis, Manolis</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3042-9161</orcidid></search><sort><creationdate>20190822</creationdate><title>Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization</title><author>Liu, Dianbo ; Davila-Velderrain, Jose ; Zhang, Zhizhuo ; Kellis, Manolis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1df020a29d6855bcdc8c6e83b47a6f067a53f8c915241aa018bfa5ba9dbc9d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Computational Biology</topic><topic>Computational Biology - methods</topic><topic>Epigenomics - methods</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Ontology</topic><topic>Gene Regulatory Networks</topic><topic>Humans</topic><topic>K562 Cells</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Interaction Mapping - methods</topic><topic>Regulatory Elements, Transcriptional - genetics</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dianbo</creatorcontrib><creatorcontrib>Davila-Velderrain, Jose</creatorcontrib><creatorcontrib>Zhang, Zhizhuo</creatorcontrib><creatorcontrib>Kellis, Manolis</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dianbo</au><au>Davila-Velderrain, Jose</au><au>Zhang, Zhizhuo</au><au>Kellis, Manolis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-08-22</date><risdate>2019</risdate><volume>47</volume><issue>14</issue><spage>7235</spage><epage>7246</epage><pages>7235-7246</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Despite large experimental and computational efforts aiming to dissect the mechanisms underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. Here, we introduce a matrix factorization framework to integrate physical and functional interaction data of genomic segments. The framework was used to predict a regulatory network of chromatin interaction edges linking more than 20 000 promoters and 1.8 million enhancers across 127 human reference epigenomes, including edges that are present in any of the input datasets. Our network integrates functional evidence of correlated activity patterns from epigenomic data and physical evidence of chromatin interactions. An important contribution of this work is the representation of heterogeneous data with different qualities as networks. We show that the unbiased integration of independent data sources suggestive of regulatory interactions produces meaningful associations supported by existing functional and physical evidence, correlating with expected independent biological features.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31265076</pmid><doi>10.1093/nar/gkz538</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3042-9161</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2019-08, Vol.47 (14), p.7235-7246
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6698807
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Chromatin - genetics
Chromatin - metabolism
Computational Biology
Computational Biology - methods
Epigenomics - methods
Gene Expression Profiling - methods
Gene Ontology
Gene Regulatory Networks
Humans
K562 Cells
Polymorphism, Single Nucleotide
Promoter Regions, Genetic - genetics
Protein Interaction Mapping - methods
Regulatory Elements, Transcriptional - genetics
Reproducibility of Results
title Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20construction%20of%20regulatory%20region%20networks%20in%20127%20human%20reference%20epigenomes%20by%20matrix%20factorization&rft.jtitle=Nucleic%20acids%20research&rft.au=Liu,%20Dianbo&rft.date=2019-08-22&rft.volume=47&rft.issue=14&rft.spage=7235&rft.epage=7246&rft.pages=7235-7246&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz538&rft_dat=%3Cproquest_pubme%3E2251100933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251100933&rft_id=info:pmid/31265076&rft_oup_id=10.1093/nar/gkz538&rfr_iscdi=true