Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization
Abstract Despite large experimental and computational efforts aiming to dissect the mechanisms underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. Here, we introduce a matrix factorization framework to integrate physical and functional interaction data of ge...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2019-08, Vol.47 (14), p.7235-7246 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7246 |
---|---|
container_issue | 14 |
container_start_page | 7235 |
container_title | Nucleic acids research |
container_volume | 47 |
creator | Liu, Dianbo Davila-Velderrain, Jose Zhang, Zhizhuo Kellis, Manolis |
description | Abstract
Despite large experimental and computational efforts aiming to dissect the mechanisms underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. Here, we introduce a matrix factorization framework to integrate physical and functional interaction data of genomic segments. The framework was used to predict a regulatory network of chromatin interaction edges linking more than 20 000 promoters and 1.8 million enhancers across 127 human reference epigenomes, including edges that are present in any of the input datasets. Our network integrates functional evidence of correlated activity patterns from epigenomic data and physical evidence of chromatin interactions. An important contribution of this work is the representation of heterogeneous data with different qualities as networks. We show that the unbiased integration of independent data sources suggestive of regulatory interactions produces meaningful associations supported by existing functional and physical evidence, correlating with expected independent biological features. |
doi_str_mv | 10.1093/nar/gkz538 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6698807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkz538</oup_id><sourcerecordid>2251100933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1df020a29d6855bcdc8c6e83b47a6f067a53f8c915241aa018bfa5ba9dbc9d563</originalsourceid><addsrcrecordid>eNp9kUtr3TAQRkVIaW6TbvIDijaBUnCjhyXLm0AIfQQC3TRrMZZlR40tOZKc9ubXV5ebhnbTlQbN4cwwH0KnlHykpOXnHuL5eP8kuDpAG8olq-pWskO0IZyIipJaHaE3Kf0ghNZU1K_REadMCtLIDVqufbZjhOweLTbBpxxXk13wOAw42nGdIIe43ZW7T2_zzxDvE3YeU9bgu3UGX5qDjdYbi-3iRuvDbBPutniGHN0vPIApDvcEO-8JejXAlOzb5_cY3X7-9P3qa3Xz7cv11eVNZWqickX7gTACrO2lEqIzvVFGWsW7ugE5ENmA4IMyLRWspgCEqm4A0UHbd6btheTH6GLvXdZutr2xPkeY9BLdDHGrAzj9b8e7Oz2GRy1lqxRpiuD9syCGh9WmrGeXjJ0m8DasSTMmKCXl_rygH_aoiSGlco2XMZToXUS6RKT3ERX43d-LvaB_MinA2R4I6_I_0W9ERZ6H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251100933</pqid></control><display><type>article</type><title>Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Dianbo ; Davila-Velderrain, Jose ; Zhang, Zhizhuo ; Kellis, Manolis</creator><creatorcontrib>Liu, Dianbo ; Davila-Velderrain, Jose ; Zhang, Zhizhuo ; Kellis, Manolis</creatorcontrib><description>Abstract
Despite large experimental and computational efforts aiming to dissect the mechanisms underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. Here, we introduce a matrix factorization framework to integrate physical and functional interaction data of genomic segments. The framework was used to predict a regulatory network of chromatin interaction edges linking more than 20 000 promoters and 1.8 million enhancers across 127 human reference epigenomes, including edges that are present in any of the input datasets. Our network integrates functional evidence of correlated activity patterns from epigenomic data and physical evidence of chromatin interactions. An important contribution of this work is the representation of heterogeneous data with different qualities as networks. We show that the unbiased integration of independent data sources suggestive of regulatory interactions produces meaningful associations supported by existing functional and physical evidence, correlating with expected independent biological features.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz538</identifier><identifier>PMID: 31265076</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Chromatin - genetics ; Chromatin - metabolism ; Computational Biology ; Computational Biology - methods ; Epigenomics - methods ; Gene Expression Profiling - methods ; Gene Ontology ; Gene Regulatory Networks ; Humans ; K562 Cells ; Polymorphism, Single Nucleotide ; Promoter Regions, Genetic - genetics ; Protein Interaction Mapping - methods ; Regulatory Elements, Transcriptional - genetics ; Reproducibility of Results</subject><ispartof>Nucleic acids research, 2019-08, Vol.47 (14), p.7235-7246</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1df020a29d6855bcdc8c6e83b47a6f067a53f8c915241aa018bfa5ba9dbc9d563</citedby><cites>FETCH-LOGICAL-c408t-1df020a29d6855bcdc8c6e83b47a6f067a53f8c915241aa018bfa5ba9dbc9d563</cites><orcidid>0000-0002-3042-9161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698807/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698807/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1603,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31265076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Dianbo</creatorcontrib><creatorcontrib>Davila-Velderrain, Jose</creatorcontrib><creatorcontrib>Zhang, Zhizhuo</creatorcontrib><creatorcontrib>Kellis, Manolis</creatorcontrib><title>Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
Despite large experimental and computational efforts aiming to dissect the mechanisms underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. Here, we introduce a matrix factorization framework to integrate physical and functional interaction data of genomic segments. The framework was used to predict a regulatory network of chromatin interaction edges linking more than 20 000 promoters and 1.8 million enhancers across 127 human reference epigenomes, including edges that are present in any of the input datasets. Our network integrates functional evidence of correlated activity patterns from epigenomic data and physical evidence of chromatin interactions. An important contribution of this work is the representation of heterogeneous data with different qualities as networks. We show that the unbiased integration of independent data sources suggestive of regulatory interactions produces meaningful associations supported by existing functional and physical evidence, correlating with expected independent biological features.</description><subject>Algorithms</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Computational Biology</subject><subject>Computational Biology - methods</subject><subject>Epigenomics - methods</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Ontology</subject><subject>Gene Regulatory Networks</subject><subject>Humans</subject><subject>K562 Cells</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Interaction Mapping - methods</subject><subject>Regulatory Elements, Transcriptional - genetics</subject><subject>Reproducibility of Results</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtr3TAQRkVIaW6TbvIDijaBUnCjhyXLm0AIfQQC3TRrMZZlR40tOZKc9ubXV5ebhnbTlQbN4cwwH0KnlHykpOXnHuL5eP8kuDpAG8olq-pWskO0IZyIipJaHaE3Kf0ghNZU1K_REadMCtLIDVqufbZjhOweLTbBpxxXk13wOAw42nGdIIe43ZW7T2_zzxDvE3YeU9bgu3UGX5qDjdYbi-3iRuvDbBPutniGHN0vPIApDvcEO-8JejXAlOzb5_cY3X7-9P3qa3Xz7cv11eVNZWqickX7gTACrO2lEqIzvVFGWsW7ugE5ENmA4IMyLRWspgCEqm4A0UHbd6btheTH6GLvXdZutr2xPkeY9BLdDHGrAzj9b8e7Oz2GRy1lqxRpiuD9syCGh9WmrGeXjJ0m8DasSTMmKCXl_rygH_aoiSGlco2XMZToXUS6RKT3ERX43d-LvaB_MinA2R4I6_I_0W9ERZ6H</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Liu, Dianbo</creator><creator>Davila-Velderrain, Jose</creator><creator>Zhang, Zhizhuo</creator><creator>Kellis, Manolis</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3042-9161</orcidid></search><sort><creationdate>20190822</creationdate><title>Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization</title><author>Liu, Dianbo ; Davila-Velderrain, Jose ; Zhang, Zhizhuo ; Kellis, Manolis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1df020a29d6855bcdc8c6e83b47a6f067a53f8c915241aa018bfa5ba9dbc9d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Computational Biology</topic><topic>Computational Biology - methods</topic><topic>Epigenomics - methods</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Ontology</topic><topic>Gene Regulatory Networks</topic><topic>Humans</topic><topic>K562 Cells</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Interaction Mapping - methods</topic><topic>Regulatory Elements, Transcriptional - genetics</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dianbo</creatorcontrib><creatorcontrib>Davila-Velderrain, Jose</creatorcontrib><creatorcontrib>Zhang, Zhizhuo</creatorcontrib><creatorcontrib>Kellis, Manolis</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dianbo</au><au>Davila-Velderrain, Jose</au><au>Zhang, Zhizhuo</au><au>Kellis, Manolis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-08-22</date><risdate>2019</risdate><volume>47</volume><issue>14</issue><spage>7235</spage><epage>7246</epage><pages>7235-7246</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
Despite large experimental and computational efforts aiming to dissect the mechanisms underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. Here, we introduce a matrix factorization framework to integrate physical and functional interaction data of genomic segments. The framework was used to predict a regulatory network of chromatin interaction edges linking more than 20 000 promoters and 1.8 million enhancers across 127 human reference epigenomes, including edges that are present in any of the input datasets. Our network integrates functional evidence of correlated activity patterns from epigenomic data and physical evidence of chromatin interactions. An important contribution of this work is the representation of heterogeneous data with different qualities as networks. We show that the unbiased integration of independent data sources suggestive of regulatory interactions produces meaningful associations supported by existing functional and physical evidence, correlating with expected independent biological features.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31265076</pmid><doi>10.1093/nar/gkz538</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3042-9161</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2019-08, Vol.47 (14), p.7235-7246 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6698807 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Chromatin - genetics Chromatin - metabolism Computational Biology Computational Biology - methods Epigenomics - methods Gene Expression Profiling - methods Gene Ontology Gene Regulatory Networks Humans K562 Cells Polymorphism, Single Nucleotide Promoter Regions, Genetic - genetics Protein Interaction Mapping - methods Regulatory Elements, Transcriptional - genetics Reproducibility of Results |
title | Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20construction%20of%20regulatory%20region%20networks%20in%20127%20human%20reference%20epigenomes%20by%20matrix%20factorization&rft.jtitle=Nucleic%20acids%20research&rft.au=Liu,%20Dianbo&rft.date=2019-08-22&rft.volume=47&rft.issue=14&rft.spage=7235&rft.epage=7246&rft.pages=7235-7246&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz538&rft_dat=%3Cproquest_pubme%3E2251100933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251100933&rft_id=info:pmid/31265076&rft_oup_id=10.1093/nar/gkz538&rfr_iscdi=true |