Ferroportin downregulation promotes cell proliferation by modulating the Nrf2–miR-17-5p axis in multiple myeloma

Recent findings demonstrate that aberrant downregulation of the iron-exporter protein, ferroportin (FPN1), is associated with poor prognosis and osteoclast differentiation in multiple myeloma (MM). Here, we show that FPN1 was downregulated in MM and that clustered regularly interspaced short palindr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2019-08, Vol.10 (9), p.624-12, Article 624
Hauptverfasser: Kong, Yuanyuan, Hu, Liangning, Lu, Kang, Wang, Yingcong, Xie, Yongsheng, Gao, Lu, Yang, Guang, Xie, Bingqian, He, Wan, Chen, Gege, Wu, Huiqun, Wu, Xiaosong, Zhan, Fenghuang, Shi, Jumei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 9
container_start_page 624
container_title Cell death & disease
container_volume 10
creator Kong, Yuanyuan
Hu, Liangning
Lu, Kang
Wang, Yingcong
Xie, Yongsheng
Gao, Lu
Yang, Guang
Xie, Bingqian
He, Wan
Chen, Gege
Wu, Huiqun
Wu, Xiaosong
Zhan, Fenghuang
Shi, Jumei
description Recent findings demonstrate that aberrant downregulation of the iron-exporter protein, ferroportin (FPN1), is associated with poor prognosis and osteoclast differentiation in multiple myeloma (MM). Here, we show that FPN1 was downregulated in MM and that clustered regularly interspaced short palindromic repeat (CRISPR)-mediated FPN1 knockout promoted MM cell growth and survival. Using a microRNA target-scan algorithm, we identified miR-17-5p as an FPN1 regulator that promoted cell proliferation and cell cycle progression, and inhibited apoptosis—both in vitro and in vivo. miR-17-5p inhibited retarded tumor growth in a MM xenograft model. Moreover, restoring FPN1 expression at least partially abrogated the biological effects of miR-17-5p in MM cells. The cellular iron concentration regulated the expression of the iron-regulatory protein (IRP) via the 5′-untranslated region of IRP messenger RNA and modulated the post-transcriptional stability of FPN1. Bioinformatics analysis with subsequent chromatin immunoprecipitation-polymerase chain reaction and luciferase activity experiments revealed that the transcription factor Nrf2 drove FPN1 transcription through promoter binding and suppressed miR-17-5p (which also increased FPN1 expression). Nrf2-mediated FPN1 downregulation promoted intracellular iron accumulation and reactive oxygen species. Our study links FPN1 transcriptional and post-transcriptional regulation with MM cell growth and survival, and validates the prognostic value of FPN1 and its utility as a novel therapeutic target in MM.
doi_str_mv 10.1038/s41419-019-1854-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6698482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275102761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-1373f302bbe019ee758896891aeca9a62d835719b52d1fbee26c9648d06577bf3</originalsourceid><addsrcrecordid>eNp1kc9qFTEUxoMotrR9ADcScONmNP8nsxGk2CoUC6LrkJk5c5uSTMZkpvbu-g59Q5_E3E6tVTAQknB-50u-fAi9oOQNJVy_zYIK2lSkTKqlqMgTtM-IoJXQunn6aL-HjnK-JGVwTphUz9Eep4JxQsk-SieQUpximt2I-_hjTLBZvJ1dHPGUYogzZNyB97uTdwOktdZucYj9HTlu8HwB-HMa2M-b2-C-VLSu5ITttcu4qIbFz27ygMMWfAz2ED0brM9wdL8eoG8nH74ef6zOzk8_Hb8_qzrJ1VxRXvOhPLhtoXgEqGXxonRDLXS2sYr1msuaNq1kPR1aAKa6RgndEyXruh34AXq36k5LG6DvYJyT9WZKLti0NdE683dldBdmE6-MUo0WmhWB1_cCKX5fIM8muLz7CztCXLJhrJaNkELxgr76B72MSxqLvTuKElYrWii6Ul2KOScYHh5DidmFatZQTTFsdqEaUnpePnbx0PE7wgKwFcilNG4g_bn6_6q_AMyyrxM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275102761</pqid></control><display><type>article</type><title>Ferroportin downregulation promotes cell proliferation by modulating the Nrf2–miR-17-5p axis in multiple myeloma</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Kong, Yuanyuan ; Hu, Liangning ; Lu, Kang ; Wang, Yingcong ; Xie, Yongsheng ; Gao, Lu ; Yang, Guang ; Xie, Bingqian ; He, Wan ; Chen, Gege ; Wu, Huiqun ; Wu, Xiaosong ; Zhan, Fenghuang ; Shi, Jumei</creator><creatorcontrib>Kong, Yuanyuan ; Hu, Liangning ; Lu, Kang ; Wang, Yingcong ; Xie, Yongsheng ; Gao, Lu ; Yang, Guang ; Xie, Bingqian ; He, Wan ; Chen, Gege ; Wu, Huiqun ; Wu, Xiaosong ; Zhan, Fenghuang ; Shi, Jumei</creatorcontrib><description>Recent findings demonstrate that aberrant downregulation of the iron-exporter protein, ferroportin (FPN1), is associated with poor prognosis and osteoclast differentiation in multiple myeloma (MM). Here, we show that FPN1 was downregulated in MM and that clustered regularly interspaced short palindromic repeat (CRISPR)-mediated FPN1 knockout promoted MM cell growth and survival. Using a microRNA target-scan algorithm, we identified miR-17-5p as an FPN1 regulator that promoted cell proliferation and cell cycle progression, and inhibited apoptosis—both in vitro and in vivo. miR-17-5p inhibited retarded tumor growth in a MM xenograft model. Moreover, restoring FPN1 expression at least partially abrogated the biological effects of miR-17-5p in MM cells. The cellular iron concentration regulated the expression of the iron-regulatory protein (IRP) via the 5′-untranslated region of IRP messenger RNA and modulated the post-transcriptional stability of FPN1. Bioinformatics analysis with subsequent chromatin immunoprecipitation-polymerase chain reaction and luciferase activity experiments revealed that the transcription factor Nrf2 drove FPN1 transcription through promoter binding and suppressed miR-17-5p (which also increased FPN1 expression). Nrf2-mediated FPN1 downregulation promoted intracellular iron accumulation and reactive oxygen species. Our study links FPN1 transcriptional and post-transcriptional regulation with MM cell growth and survival, and validates the prognostic value of FPN1 and its utility as a novel therapeutic target in MM.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-019-1854-0</identifier><identifier>PMID: 31423010</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/2 ; 13/31 ; 14/1 ; 38/109 ; 38/77 ; 42/41 ; 631/337/384/331 ; 64/60 ; 692/699/1541/1990/804 ; 82/80 ; Antibodies ; Apoptosis ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Cell Biology ; Cell Culture ; Cell cycle ; Cell growth ; Cell proliferation ; Cell Proliferation - physiology ; Cell survival ; Chromatin ; CRISPR ; Down-Regulation ; Gene Knockout Techniques ; Gene regulation ; HEK293 Cells ; Humans ; Immunology ; Immunoprecipitation ; Iron ; Life Sciences ; Medical prognosis ; MicroRNAs - metabolism ; miRNA ; mRNA ; Multiple myeloma ; Multiple Myeloma - genetics ; Multiple Myeloma - metabolism ; Multiple Myeloma - pathology ; NF-E2-Related Factor 2 - metabolism ; Osteoclastogenesis ; Polymerase chain reaction ; Post-transcription ; Reactive oxygen species ; Signal Transduction ; Therapeutic applications ; Xenografts</subject><ispartof>Cell death &amp; disease, 2019-08, Vol.10 (9), p.624-12, Article 624</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-1373f302bbe019ee758896891aeca9a62d835719b52d1fbee26c9648d06577bf3</citedby><cites>FETCH-LOGICAL-c536t-1373f302bbe019ee758896891aeca9a62d835719b52d1fbee26c9648d06577bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698482/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698482/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31423010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Yuanyuan</creatorcontrib><creatorcontrib>Hu, Liangning</creatorcontrib><creatorcontrib>Lu, Kang</creatorcontrib><creatorcontrib>Wang, Yingcong</creatorcontrib><creatorcontrib>Xie, Yongsheng</creatorcontrib><creatorcontrib>Gao, Lu</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Xie, Bingqian</creatorcontrib><creatorcontrib>He, Wan</creatorcontrib><creatorcontrib>Chen, Gege</creatorcontrib><creatorcontrib>Wu, Huiqun</creatorcontrib><creatorcontrib>Wu, Xiaosong</creatorcontrib><creatorcontrib>Zhan, Fenghuang</creatorcontrib><creatorcontrib>Shi, Jumei</creatorcontrib><title>Ferroportin downregulation promotes cell proliferation by modulating the Nrf2–miR-17-5p axis in multiple myeloma</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Recent findings demonstrate that aberrant downregulation of the iron-exporter protein, ferroportin (FPN1), is associated with poor prognosis and osteoclast differentiation in multiple myeloma (MM). Here, we show that FPN1 was downregulated in MM and that clustered regularly interspaced short palindromic repeat (CRISPR)-mediated FPN1 knockout promoted MM cell growth and survival. Using a microRNA target-scan algorithm, we identified miR-17-5p as an FPN1 regulator that promoted cell proliferation and cell cycle progression, and inhibited apoptosis—both in vitro and in vivo. miR-17-5p inhibited retarded tumor growth in a MM xenograft model. Moreover, restoring FPN1 expression at least partially abrogated the biological effects of miR-17-5p in MM cells. The cellular iron concentration regulated the expression of the iron-regulatory protein (IRP) via the 5′-untranslated region of IRP messenger RNA and modulated the post-transcriptional stability of FPN1. Bioinformatics analysis with subsequent chromatin immunoprecipitation-polymerase chain reaction and luciferase activity experiments revealed that the transcription factor Nrf2 drove FPN1 transcription through promoter binding and suppressed miR-17-5p (which also increased FPN1 expression). Nrf2-mediated FPN1 downregulation promoted intracellular iron accumulation and reactive oxygen species. Our study links FPN1 transcriptional and post-transcriptional regulation with MM cell growth and survival, and validates the prognostic value of FPN1 and its utility as a novel therapeutic target in MM.</description><subject>13/2</subject><subject>13/31</subject><subject>14/1</subject><subject>38/109</subject><subject>38/77</subject><subject>42/41</subject><subject>631/337/384/331</subject><subject>64/60</subject><subject>692/699/1541/1990/804</subject><subject>82/80</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - physiology</subject><subject>Cell survival</subject><subject>Chromatin</subject><subject>CRISPR</subject><subject>Down-Regulation</subject><subject>Gene Knockout Techniques</subject><subject>Gene regulation</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunology</subject><subject>Immunoprecipitation</subject><subject>Iron</subject><subject>Life Sciences</subject><subject>Medical prognosis</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>mRNA</subject><subject>Multiple myeloma</subject><subject>Multiple Myeloma - genetics</subject><subject>Multiple Myeloma - metabolism</subject><subject>Multiple Myeloma - pathology</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Osteoclastogenesis</subject><subject>Polymerase chain reaction</subject><subject>Post-transcription</subject><subject>Reactive oxygen species</subject><subject>Signal Transduction</subject><subject>Therapeutic applications</subject><subject>Xenografts</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc9qFTEUxoMotrR9ADcScONmNP8nsxGk2CoUC6LrkJk5c5uSTMZkpvbu-g59Q5_E3E6tVTAQknB-50u-fAi9oOQNJVy_zYIK2lSkTKqlqMgTtM-IoJXQunn6aL-HjnK-JGVwTphUz9Eep4JxQsk-SieQUpximt2I-_hjTLBZvJ1dHPGUYogzZNyB97uTdwOktdZucYj9HTlu8HwB-HMa2M-b2-C-VLSu5ITttcu4qIbFz27ygMMWfAz2ED0brM9wdL8eoG8nH74ef6zOzk8_Hb8_qzrJ1VxRXvOhPLhtoXgEqGXxonRDLXS2sYr1msuaNq1kPR1aAKa6RgndEyXruh34AXq36k5LG6DvYJyT9WZKLti0NdE683dldBdmE6-MUo0WmhWB1_cCKX5fIM8muLz7CztCXLJhrJaNkELxgr76B72MSxqLvTuKElYrWii6Ul2KOScYHh5DidmFatZQTTFsdqEaUnpePnbx0PE7wgKwFcilNG4g_bn6_6q_AMyyrxM</recordid><startdate>20190819</startdate><enddate>20190819</enddate><creator>Kong, Yuanyuan</creator><creator>Hu, Liangning</creator><creator>Lu, Kang</creator><creator>Wang, Yingcong</creator><creator>Xie, Yongsheng</creator><creator>Gao, Lu</creator><creator>Yang, Guang</creator><creator>Xie, Bingqian</creator><creator>He, Wan</creator><creator>Chen, Gege</creator><creator>Wu, Huiqun</creator><creator>Wu, Xiaosong</creator><creator>Zhan, Fenghuang</creator><creator>Shi, Jumei</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190819</creationdate><title>Ferroportin downregulation promotes cell proliferation by modulating the Nrf2–miR-17-5p axis in multiple myeloma</title><author>Kong, Yuanyuan ; Hu, Liangning ; Lu, Kang ; Wang, Yingcong ; Xie, Yongsheng ; Gao, Lu ; Yang, Guang ; Xie, Bingqian ; He, Wan ; Chen, Gege ; Wu, Huiqun ; Wu, Xiaosong ; Zhan, Fenghuang ; Shi, Jumei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-1373f302bbe019ee758896891aeca9a62d835719b52d1fbee26c9648d06577bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/2</topic><topic>13/31</topic><topic>14/1</topic><topic>38/109</topic><topic>38/77</topic><topic>42/41</topic><topic>631/337/384/331</topic><topic>64/60</topic><topic>692/699/1541/1990/804</topic><topic>82/80</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - physiology</topic><topic>Cell survival</topic><topic>Chromatin</topic><topic>CRISPR</topic><topic>Down-Regulation</topic><topic>Gene Knockout Techniques</topic><topic>Gene regulation</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunology</topic><topic>Immunoprecipitation</topic><topic>Iron</topic><topic>Life Sciences</topic><topic>Medical prognosis</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>mRNA</topic><topic>Multiple myeloma</topic><topic>Multiple Myeloma - genetics</topic><topic>Multiple Myeloma - metabolism</topic><topic>Multiple Myeloma - pathology</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Osteoclastogenesis</topic><topic>Polymerase chain reaction</topic><topic>Post-transcription</topic><topic>Reactive oxygen species</topic><topic>Signal Transduction</topic><topic>Therapeutic applications</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Yuanyuan</creatorcontrib><creatorcontrib>Hu, Liangning</creatorcontrib><creatorcontrib>Lu, Kang</creatorcontrib><creatorcontrib>Wang, Yingcong</creatorcontrib><creatorcontrib>Xie, Yongsheng</creatorcontrib><creatorcontrib>Gao, Lu</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Xie, Bingqian</creatorcontrib><creatorcontrib>He, Wan</creatorcontrib><creatorcontrib>Chen, Gege</creatorcontrib><creatorcontrib>Wu, Huiqun</creatorcontrib><creatorcontrib>Wu, Xiaosong</creatorcontrib><creatorcontrib>Zhan, Fenghuang</creatorcontrib><creatorcontrib>Shi, Jumei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Yuanyuan</au><au>Hu, Liangning</au><au>Lu, Kang</au><au>Wang, Yingcong</au><au>Xie, Yongsheng</au><au>Gao, Lu</au><au>Yang, Guang</au><au>Xie, Bingqian</au><au>He, Wan</au><au>Chen, Gege</au><au>Wu, Huiqun</au><au>Wu, Xiaosong</au><au>Zhan, Fenghuang</au><au>Shi, Jumei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroportin downregulation promotes cell proliferation by modulating the Nrf2–miR-17-5p axis in multiple myeloma</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2019-08-19</date><risdate>2019</risdate><volume>10</volume><issue>9</issue><spage>624</spage><epage>12</epage><pages>624-12</pages><artnum>624</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Recent findings demonstrate that aberrant downregulation of the iron-exporter protein, ferroportin (FPN1), is associated with poor prognosis and osteoclast differentiation in multiple myeloma (MM). Here, we show that FPN1 was downregulated in MM and that clustered regularly interspaced short palindromic repeat (CRISPR)-mediated FPN1 knockout promoted MM cell growth and survival. Using a microRNA target-scan algorithm, we identified miR-17-5p as an FPN1 regulator that promoted cell proliferation and cell cycle progression, and inhibited apoptosis—both in vitro and in vivo. miR-17-5p inhibited retarded tumor growth in a MM xenograft model. Moreover, restoring FPN1 expression at least partially abrogated the biological effects of miR-17-5p in MM cells. The cellular iron concentration regulated the expression of the iron-regulatory protein (IRP) via the 5′-untranslated region of IRP messenger RNA and modulated the post-transcriptional stability of FPN1. Bioinformatics analysis with subsequent chromatin immunoprecipitation-polymerase chain reaction and luciferase activity experiments revealed that the transcription factor Nrf2 drove FPN1 transcription through promoter binding and suppressed miR-17-5p (which also increased FPN1 expression). Nrf2-mediated FPN1 downregulation promoted intracellular iron accumulation and reactive oxygen species. Our study links FPN1 transcriptional and post-transcriptional regulation with MM cell growth and survival, and validates the prognostic value of FPN1 and its utility as a novel therapeutic target in MM.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31423010</pmid><doi>10.1038/s41419-019-1854-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2019-08, Vol.10 (9), p.624-12, Article 624
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6698482
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals
subjects 13/2
13/31
14/1
38/109
38/77
42/41
631/337/384/331
64/60
692/699/1541/1990/804
82/80
Antibodies
Apoptosis
Biochemistry
Bioinformatics
Biomedical and Life Sciences
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Cell Biology
Cell Culture
Cell cycle
Cell growth
Cell proliferation
Cell Proliferation - physiology
Cell survival
Chromatin
CRISPR
Down-Regulation
Gene Knockout Techniques
Gene regulation
HEK293 Cells
Humans
Immunology
Immunoprecipitation
Iron
Life Sciences
Medical prognosis
MicroRNAs - metabolism
miRNA
mRNA
Multiple myeloma
Multiple Myeloma - genetics
Multiple Myeloma - metabolism
Multiple Myeloma - pathology
NF-E2-Related Factor 2 - metabolism
Osteoclastogenesis
Polymerase chain reaction
Post-transcription
Reactive oxygen species
Signal Transduction
Therapeutic applications
Xenografts
title Ferroportin downregulation promotes cell proliferation by modulating the Nrf2–miR-17-5p axis in multiple myeloma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroportin%20downregulation%20promotes%20cell%20proliferation%20by%20modulating%20the%20Nrf2%E2%80%93miR-17-5p%20axis%20in%20multiple%20myeloma&rft.jtitle=Cell%20death%20&%20disease&rft.au=Kong,%20Yuanyuan&rft.date=2019-08-19&rft.volume=10&rft.issue=9&rft.spage=624&rft.epage=12&rft.pages=624-12&rft.artnum=624&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-019-1854-0&rft_dat=%3Cproquest_pubme%3E2275102761%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275102761&rft_id=info:pmid/31423010&rfr_iscdi=true