Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance
The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate pep...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2019-03, Vol.73 (6), p.1162-1173.e5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1173.e5 |
---|---|
container_issue | 6 |
container_start_page | 1162 |
container_title | Molecular cell |
container_volume | 73 |
creator | Wei, Jiajie Kishton, Rigel J. Angel, Matthew Conn, Crystal S. Dalla-Venezia, Nicole Marcel, Virginie Vincent, Anne Catez, Frédéric Ferré, Sabrina Ayadi, Lilia Marchand, Virginie Dersh, Devin Gibbs, James S. Ivanov, Ivaylo P. Fridlyand, Nathan Couté, Yohann Diaz, Jean-Jacques Qian, Shu-Bing Staudt, Louis M. Restifo, Nicholas P. Yewdell, Jonathan W. |
description | The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of “untranslated” regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.
[Display omitted]
•Ribosome heterogeneity controls MHC class I peptide ligand presentation•RPL6 and RPL28 play opposing roles in viral peptide generation•RPS28 controls MHC class I peptide generation by modulating non-canonical translation•Ribosomal proteins influence CD8+ T cell cancer immunosurveillance
Wei et al. show that cells with ribosomes lacking any one of three ribosomal protein subunits have an altered capacity to generate MHC class I peptides for immunosurveillance and that tumor cells can potentially use this mechanism to avoid CD8 T cell immunosurveillance. |
doi_str_mv | 10.1016/j.molcel.2018.12.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276518310967</els_id><sourcerecordid>2221002140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-af0133ab7e6718b024f8206a9931763e6abc480c05620be6cd3f5f3fcc26b4b23</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRAV_YB_gFCOcNh0_BE7uSBVK9pdaVFLBWfLcSatV0682MlK_HsS7VI-DvTkkee9NzPvEfKWQk6Bystt3gVv0ecMaJlTlgODF-SMQqUWgkrx8lgzJYtTcp7SFoCKoqxekVMOirKqgjPy5d7VIYXO-OwuhgFdn7J7fBi9GTD7vFpmS29SytbZHe4G12B2gz1GM7jQZ22I2brrxj6kMe7ReW96i6_JSWt8wjfH94J8u_70dblabG5v1surzcIWHIaFaYFybmqFUtGyBibakoE0VcWpkhylqa0owUIhGdQobcPbouWttUzWomb8gnw86O7GusPGYj9E4_Uuus7EHzoYp__u9O5RP4S9lrJSUIhJ4MNB4PEf2upqo-e_yVBQSvA9nbDvj8Ni-D5iGnTn0mT-dDGGMWnGGAVgVMDzUKoqUSnFZlVxgNoYUorYPq1BQc8h660-hKznkDVl804T7d2flz-RfqX62xqc_N87jDpZh1M2jYtoB90E9_8JPwH_JLmv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179497721</pqid></control><display><type>article</type><title>Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Wei, Jiajie ; Kishton, Rigel J. ; Angel, Matthew ; Conn, Crystal S. ; Dalla-Venezia, Nicole ; Marcel, Virginie ; Vincent, Anne ; Catez, Frédéric ; Ferré, Sabrina ; Ayadi, Lilia ; Marchand, Virginie ; Dersh, Devin ; Gibbs, James S. ; Ivanov, Ivaylo P. ; Fridlyand, Nathan ; Couté, Yohann ; Diaz, Jean-Jacques ; Qian, Shu-Bing ; Staudt, Louis M. ; Restifo, Nicholas P. ; Yewdell, Jonathan W.</creator><creatorcontrib>Wei, Jiajie ; Kishton, Rigel J. ; Angel, Matthew ; Conn, Crystal S. ; Dalla-Venezia, Nicole ; Marcel, Virginie ; Vincent, Anne ; Catez, Frédéric ; Ferré, Sabrina ; Ayadi, Lilia ; Marchand, Virginie ; Dersh, Devin ; Gibbs, James S. ; Ivanov, Ivaylo P. ; Fridlyand, Nathan ; Couté, Yohann ; Diaz, Jean-Jacques ; Qian, Shu-Bing ; Staudt, Louis M. ; Restifo, Nicholas P. ; Yewdell, Jonathan W.</creatorcontrib><description>The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of “untranslated” regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.
[Display omitted]
•Ribosome heterogeneity controls MHC class I peptide ligand presentation•RPL6 and RPL28 play opposing roles in viral peptide generation•RPS28 controls MHC class I peptide generation by modulating non-canonical translation•Ribosomal proteins influence CD8+ T cell cancer immunosurveillance
Wei et al. show that cells with ribosomes lacking any one of three ribosomal protein subunits have an altered capacity to generate MHC class I peptides for immunosurveillance and that tumor cells can potentially use this mechanism to avoid CD8 T cell immunosurveillance.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2018.12.020</identifier><identifier>PMID: 30712990</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antigen Presentation ; Biochemistry, Molecular Biology ; Cell Line, Tumor ; Coculture Techniques ; Genomics ; HEK293 Cells ; Histocompatibility Antigens Class I - biosynthesis ; Histocompatibility Antigens Class I - immunology ; Host-Pathogen Interactions ; Humans ; Immunologic Surveillance ; immunosurveillance ; Influenza A virus ; Influenza A virus - immunology ; Influenza A virus - pathogenicity ; Life Sciences ; major histocompatibility complex ; Melanoma - immunology ; Melanoma - metabolism ; MHC-I antigen presentation ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular biology ; neoplasm cells ; neoplasms ; polypeptides ; protein synthesis ; ribosomal protein ; ribosomal proteins ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; Ribosome Subunits, Large, Eukaryotic - genetics ; Ribosome Subunits, Large, Eukaryotic - metabolism ; Ribosome Subunits, Small, Eukaryotic - genetics ; Ribosome Subunits, Small, Eukaryotic - metabolism ; ribosomes ; Skin Neoplasms - immunology ; Skin Neoplasms - metabolism ; start codon ; T-lymphocytes ; T-Lymphocytes - immunology ; T-Lymphocytes - metabolism ; T-Lymphocytes - virology ; translation (genetics) ; ubiquitin ; viruses</subject><ispartof>Molecular cell, 2019-03, Vol.73 (6), p.1162-1173.e5</ispartof><rights>2019</rights><rights>Published by Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-af0133ab7e6718b024f8206a9931763e6abc480c05620be6cd3f5f3fcc26b4b23</citedby><cites>FETCH-LOGICAL-c530t-af0133ab7e6718b024f8206a9931763e6abc480c05620be6cd3f5f3fcc26b4b23</cites><orcidid>0000-0002-7914-4319 ; 0000-0003-4616-7685 ; 0000-0002-9557-8221 ; 0000-0003-3896-6196 ; 0000-0002-4553-3535 ; 0000-0002-3826-1906 ; 0000-0001-8255-9091 ; 0000-0002-8537-1139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276518310967$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30712990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02007743$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Jiajie</creatorcontrib><creatorcontrib>Kishton, Rigel J.</creatorcontrib><creatorcontrib>Angel, Matthew</creatorcontrib><creatorcontrib>Conn, Crystal S.</creatorcontrib><creatorcontrib>Dalla-Venezia, Nicole</creatorcontrib><creatorcontrib>Marcel, Virginie</creatorcontrib><creatorcontrib>Vincent, Anne</creatorcontrib><creatorcontrib>Catez, Frédéric</creatorcontrib><creatorcontrib>Ferré, Sabrina</creatorcontrib><creatorcontrib>Ayadi, Lilia</creatorcontrib><creatorcontrib>Marchand, Virginie</creatorcontrib><creatorcontrib>Dersh, Devin</creatorcontrib><creatorcontrib>Gibbs, James S.</creatorcontrib><creatorcontrib>Ivanov, Ivaylo P.</creatorcontrib><creatorcontrib>Fridlyand, Nathan</creatorcontrib><creatorcontrib>Couté, Yohann</creatorcontrib><creatorcontrib>Diaz, Jean-Jacques</creatorcontrib><creatorcontrib>Qian, Shu-Bing</creatorcontrib><creatorcontrib>Staudt, Louis M.</creatorcontrib><creatorcontrib>Restifo, Nicholas P.</creatorcontrib><creatorcontrib>Yewdell, Jonathan W.</creatorcontrib><title>Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of “untranslated” regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.
[Display omitted]
•Ribosome heterogeneity controls MHC class I peptide ligand presentation•RPL6 and RPL28 play opposing roles in viral peptide generation•RPS28 controls MHC class I peptide generation by modulating non-canonical translation•Ribosomal proteins influence CD8+ T cell cancer immunosurveillance
Wei et al. show that cells with ribosomes lacking any one of three ribosomal protein subunits have an altered capacity to generate MHC class I peptides for immunosurveillance and that tumor cells can potentially use this mechanism to avoid CD8 T cell immunosurveillance.</description><subject>Animals</subject><subject>Antigen Presentation</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell Line, Tumor</subject><subject>Coculture Techniques</subject><subject>Genomics</subject><subject>HEK293 Cells</subject><subject>Histocompatibility Antigens Class I - biosynthesis</subject><subject>Histocompatibility Antigens Class I - immunology</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Immunologic Surveillance</subject><subject>immunosurveillance</subject><subject>Influenza A virus</subject><subject>Influenza A virus - immunology</subject><subject>Influenza A virus - pathogenicity</subject><subject>Life Sciences</subject><subject>major histocompatibility complex</subject><subject>Melanoma - immunology</subject><subject>Melanoma - metabolism</subject><subject>MHC-I antigen presentation</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Molecular biology</subject><subject>neoplasm cells</subject><subject>neoplasms</subject><subject>polypeptides</subject><subject>protein synthesis</subject><subject>ribosomal protein</subject><subject>ribosomal proteins</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>Ribosome Subunits, Large, Eukaryotic - genetics</subject><subject>Ribosome Subunits, Large, Eukaryotic - metabolism</subject><subject>Ribosome Subunits, Small, Eukaryotic - genetics</subject><subject>Ribosome Subunits, Small, Eukaryotic - metabolism</subject><subject>ribosomes</subject><subject>Skin Neoplasms - immunology</subject><subject>Skin Neoplasms - metabolism</subject><subject>start codon</subject><subject>T-lymphocytes</subject><subject>T-Lymphocytes - immunology</subject><subject>T-Lymphocytes - metabolism</subject><subject>T-Lymphocytes - virology</subject><subject>translation (genetics)</subject><subject>ubiquitin</subject><subject>viruses</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAQtRAV_YB_gFCOcNh0_BE7uSBVK9pdaVFLBWfLcSatV0682MlK_HsS7VI-DvTkkee9NzPvEfKWQk6Bystt3gVv0ecMaJlTlgODF-SMQqUWgkrx8lgzJYtTcp7SFoCKoqxekVMOirKqgjPy5d7VIYXO-OwuhgFdn7J7fBi9GTD7vFpmS29SytbZHe4G12B2gz1GM7jQZ22I2brrxj6kMe7ReW96i6_JSWt8wjfH94J8u_70dblabG5v1surzcIWHIaFaYFybmqFUtGyBibakoE0VcWpkhylqa0owUIhGdQobcPbouWttUzWomb8gnw86O7GusPGYj9E4_Uuus7EHzoYp__u9O5RP4S9lrJSUIhJ4MNB4PEf2upqo-e_yVBQSvA9nbDvj8Ni-D5iGnTn0mT-dDGGMWnGGAVgVMDzUKoqUSnFZlVxgNoYUorYPq1BQc8h660-hKznkDVl804T7d2flz-RfqX62xqc_N87jDpZh1M2jYtoB90E9_8JPwH_JLmv</recordid><startdate>20190321</startdate><enddate>20190321</enddate><creator>Wei, Jiajie</creator><creator>Kishton, Rigel J.</creator><creator>Angel, Matthew</creator><creator>Conn, Crystal S.</creator><creator>Dalla-Venezia, Nicole</creator><creator>Marcel, Virginie</creator><creator>Vincent, Anne</creator><creator>Catez, Frédéric</creator><creator>Ferré, Sabrina</creator><creator>Ayadi, Lilia</creator><creator>Marchand, Virginie</creator><creator>Dersh, Devin</creator><creator>Gibbs, James S.</creator><creator>Ivanov, Ivaylo P.</creator><creator>Fridlyand, Nathan</creator><creator>Couté, Yohann</creator><creator>Diaz, Jean-Jacques</creator><creator>Qian, Shu-Bing</creator><creator>Staudt, Louis M.</creator><creator>Restifo, Nicholas P.</creator><creator>Yewdell, Jonathan W.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7914-4319</orcidid><orcidid>https://orcid.org/0000-0003-4616-7685</orcidid><orcidid>https://orcid.org/0000-0002-9557-8221</orcidid><orcidid>https://orcid.org/0000-0003-3896-6196</orcidid><orcidid>https://orcid.org/0000-0002-4553-3535</orcidid><orcidid>https://orcid.org/0000-0002-3826-1906</orcidid><orcidid>https://orcid.org/0000-0001-8255-9091</orcidid><orcidid>https://orcid.org/0000-0002-8537-1139</orcidid></search><sort><creationdate>20190321</creationdate><title>Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance</title><author>Wei, Jiajie ; Kishton, Rigel J. ; Angel, Matthew ; Conn, Crystal S. ; Dalla-Venezia, Nicole ; Marcel, Virginie ; Vincent, Anne ; Catez, Frédéric ; Ferré, Sabrina ; Ayadi, Lilia ; Marchand, Virginie ; Dersh, Devin ; Gibbs, James S. ; Ivanov, Ivaylo P. ; Fridlyand, Nathan ; Couté, Yohann ; Diaz, Jean-Jacques ; Qian, Shu-Bing ; Staudt, Louis M. ; Restifo, Nicholas P. ; Yewdell, Jonathan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-af0133ab7e6718b024f8206a9931763e6abc480c05620be6cd3f5f3fcc26b4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antigen Presentation</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell Line, Tumor</topic><topic>Coculture Techniques</topic><topic>Genomics</topic><topic>HEK293 Cells</topic><topic>Histocompatibility Antigens Class I - biosynthesis</topic><topic>Histocompatibility Antigens Class I - immunology</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Immunologic Surveillance</topic><topic>immunosurveillance</topic><topic>Influenza A virus</topic><topic>Influenza A virus - immunology</topic><topic>Influenza A virus - pathogenicity</topic><topic>Life Sciences</topic><topic>major histocompatibility complex</topic><topic>Melanoma - immunology</topic><topic>Melanoma - metabolism</topic><topic>MHC-I antigen presentation</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Molecular biology</topic><topic>neoplasm cells</topic><topic>neoplasms</topic><topic>polypeptides</topic><topic>protein synthesis</topic><topic>ribosomal protein</topic><topic>ribosomal proteins</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>Ribosome Subunits, Large, Eukaryotic - genetics</topic><topic>Ribosome Subunits, Large, Eukaryotic - metabolism</topic><topic>Ribosome Subunits, Small, Eukaryotic - genetics</topic><topic>Ribosome Subunits, Small, Eukaryotic - metabolism</topic><topic>ribosomes</topic><topic>Skin Neoplasms - immunology</topic><topic>Skin Neoplasms - metabolism</topic><topic>start codon</topic><topic>T-lymphocytes</topic><topic>T-Lymphocytes - immunology</topic><topic>T-Lymphocytes - metabolism</topic><topic>T-Lymphocytes - virology</topic><topic>translation (genetics)</topic><topic>ubiquitin</topic><topic>viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jiajie</creatorcontrib><creatorcontrib>Kishton, Rigel J.</creatorcontrib><creatorcontrib>Angel, Matthew</creatorcontrib><creatorcontrib>Conn, Crystal S.</creatorcontrib><creatorcontrib>Dalla-Venezia, Nicole</creatorcontrib><creatorcontrib>Marcel, Virginie</creatorcontrib><creatorcontrib>Vincent, Anne</creatorcontrib><creatorcontrib>Catez, Frédéric</creatorcontrib><creatorcontrib>Ferré, Sabrina</creatorcontrib><creatorcontrib>Ayadi, Lilia</creatorcontrib><creatorcontrib>Marchand, Virginie</creatorcontrib><creatorcontrib>Dersh, Devin</creatorcontrib><creatorcontrib>Gibbs, James S.</creatorcontrib><creatorcontrib>Ivanov, Ivaylo P.</creatorcontrib><creatorcontrib>Fridlyand, Nathan</creatorcontrib><creatorcontrib>Couté, Yohann</creatorcontrib><creatorcontrib>Diaz, Jean-Jacques</creatorcontrib><creatorcontrib>Qian, Shu-Bing</creatorcontrib><creatorcontrib>Staudt, Louis M.</creatorcontrib><creatorcontrib>Restifo, Nicholas P.</creatorcontrib><creatorcontrib>Yewdell, Jonathan W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jiajie</au><au>Kishton, Rigel J.</au><au>Angel, Matthew</au><au>Conn, Crystal S.</au><au>Dalla-Venezia, Nicole</au><au>Marcel, Virginie</au><au>Vincent, Anne</au><au>Catez, Frédéric</au><au>Ferré, Sabrina</au><au>Ayadi, Lilia</au><au>Marchand, Virginie</au><au>Dersh, Devin</au><au>Gibbs, James S.</au><au>Ivanov, Ivaylo P.</au><au>Fridlyand, Nathan</au><au>Couté, Yohann</au><au>Diaz, Jean-Jacques</au><au>Qian, Shu-Bing</au><au>Staudt, Louis M.</au><au>Restifo, Nicholas P.</au><au>Yewdell, Jonathan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2019-03-21</date><risdate>2019</risdate><volume>73</volume><issue>6</issue><spage>1162</spage><epage>1173.e5</epage><pages>1162-1173.e5</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of “untranslated” regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.
[Display omitted]
•Ribosome heterogeneity controls MHC class I peptide ligand presentation•RPL6 and RPL28 play opposing roles in viral peptide generation•RPS28 controls MHC class I peptide generation by modulating non-canonical translation•Ribosomal proteins influence CD8+ T cell cancer immunosurveillance
Wei et al. show that cells with ribosomes lacking any one of three ribosomal protein subunits have an altered capacity to generate MHC class I peptides for immunosurveillance and that tumor cells can potentially use this mechanism to avoid CD8 T cell immunosurveillance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30712990</pmid><doi>10.1016/j.molcel.2018.12.020</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7914-4319</orcidid><orcidid>https://orcid.org/0000-0003-4616-7685</orcidid><orcidid>https://orcid.org/0000-0002-9557-8221</orcidid><orcidid>https://orcid.org/0000-0003-3896-6196</orcidid><orcidid>https://orcid.org/0000-0002-4553-3535</orcidid><orcidid>https://orcid.org/0000-0002-3826-1906</orcidid><orcidid>https://orcid.org/0000-0001-8255-9091</orcidid><orcidid>https://orcid.org/0000-0002-8537-1139</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2019-03, Vol.73 (6), p.1162-1173.e5 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697054 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Animals Antigen Presentation Biochemistry, Molecular Biology Cell Line, Tumor Coculture Techniques Genomics HEK293 Cells Histocompatibility Antigens Class I - biosynthesis Histocompatibility Antigens Class I - immunology Host-Pathogen Interactions Humans Immunologic Surveillance immunosurveillance Influenza A virus Influenza A virus - immunology Influenza A virus - pathogenicity Life Sciences major histocompatibility complex Melanoma - immunology Melanoma - metabolism MHC-I antigen presentation Mice, Inbred C57BL Mice, Transgenic Molecular biology neoplasm cells neoplasms polypeptides protein synthesis ribosomal protein ribosomal proteins Ribosomal Proteins - genetics Ribosomal Proteins - metabolism Ribosome Subunits, Large, Eukaryotic - genetics Ribosome Subunits, Large, Eukaryotic - metabolism Ribosome Subunits, Small, Eukaryotic - genetics Ribosome Subunits, Small, Eukaryotic - metabolism ribosomes Skin Neoplasms - immunology Skin Neoplasms - metabolism start codon T-lymphocytes T-Lymphocytes - immunology T-Lymphocytes - metabolism T-Lymphocytes - virology translation (genetics) ubiquitin viruses |
title | Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ribosomal%20Proteins%20Regulate%20MHC%20Class%20I%20Peptide%20Generation%20for%20Immunosurveillance&rft.jtitle=Molecular%20cell&rft.au=Wei,%20Jiajie&rft.date=2019-03-21&rft.volume=73&rft.issue=6&rft.spage=1162&rft.epage=1173.e5&rft.pages=1162-1173.e5&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2018.12.020&rft_dat=%3Cproquest_pubme%3E2221002140%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179497721&rft_id=info:pmid/30712990&rft_els_id=S1097276518310967&rfr_iscdi=true |