Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance

The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate pep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2019-03, Vol.73 (6), p.1162-1173.e5
Hauptverfasser: Wei, Jiajie, Kishton, Rigel J., Angel, Matthew, Conn, Crystal S., Dalla-Venezia, Nicole, Marcel, Virginie, Vincent, Anne, Catez, Frédéric, Ferré, Sabrina, Ayadi, Lilia, Marchand, Virginie, Dersh, Devin, Gibbs, James S., Ivanov, Ivaylo P., Fridlyand, Nathan, Couté, Yohann, Diaz, Jean-Jacques, Qian, Shu-Bing, Staudt, Louis M., Restifo, Nicholas P., Yewdell, Jonathan W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1173.e5
container_issue 6
container_start_page 1162
container_title Molecular cell
container_volume 73
creator Wei, Jiajie
Kishton, Rigel J.
Angel, Matthew
Conn, Crystal S.
Dalla-Venezia, Nicole
Marcel, Virginie
Vincent, Anne
Catez, Frédéric
Ferré, Sabrina
Ayadi, Lilia
Marchand, Virginie
Dersh, Devin
Gibbs, James S.
Ivanov, Ivaylo P.
Fridlyand, Nathan
Couté, Yohann
Diaz, Jean-Jacques
Qian, Shu-Bing
Staudt, Louis M.
Restifo, Nicholas P.
Yewdell, Jonathan W.
description The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of “untranslated” regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes. [Display omitted] •Ribosome heterogeneity controls MHC class I peptide ligand presentation•RPL6 and RPL28 play opposing roles in viral peptide generation•RPS28 controls MHC class I peptide generation by modulating non-canonical translation•Ribosomal proteins influence CD8+ T cell cancer immunosurveillance Wei et al. show that cells with ribosomes lacking any one of three ribosomal protein subunits have an altered capacity to generate MHC class I peptides for immunosurveillance and that tumor cells can potentially use this mechanism to avoid CD8 T cell immunosurveillance.
doi_str_mv 10.1016/j.molcel.2018.12.020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276518310967</els_id><sourcerecordid>2221002140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-af0133ab7e6718b024f8206a9931763e6abc480c05620be6cd3f5f3fcc26b4b23</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRAV_YB_gFCOcNh0_BE7uSBVK9pdaVFLBWfLcSatV0682MlK_HsS7VI-DvTkkee9NzPvEfKWQk6Bystt3gVv0ecMaJlTlgODF-SMQqUWgkrx8lgzJYtTcp7SFoCKoqxekVMOirKqgjPy5d7VIYXO-OwuhgFdn7J7fBi9GTD7vFpmS29SytbZHe4G12B2gz1GM7jQZ22I2brrxj6kMe7ReW96i6_JSWt8wjfH94J8u_70dblabG5v1surzcIWHIaFaYFybmqFUtGyBibakoE0VcWpkhylqa0owUIhGdQobcPbouWttUzWomb8gnw86O7GusPGYj9E4_Uuus7EHzoYp__u9O5RP4S9lrJSUIhJ4MNB4PEf2upqo-e_yVBQSvA9nbDvj8Ni-D5iGnTn0mT-dDGGMWnGGAVgVMDzUKoqUSnFZlVxgNoYUorYPq1BQc8h660-hKznkDVl804T7d2flz-RfqX62xqc_N87jDpZh1M2jYtoB90E9_8JPwH_JLmv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179497721</pqid></control><display><type>article</type><title>Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Wei, Jiajie ; Kishton, Rigel J. ; Angel, Matthew ; Conn, Crystal S. ; Dalla-Venezia, Nicole ; Marcel, Virginie ; Vincent, Anne ; Catez, Frédéric ; Ferré, Sabrina ; Ayadi, Lilia ; Marchand, Virginie ; Dersh, Devin ; Gibbs, James S. ; Ivanov, Ivaylo P. ; Fridlyand, Nathan ; Couté, Yohann ; Diaz, Jean-Jacques ; Qian, Shu-Bing ; Staudt, Louis M. ; Restifo, Nicholas P. ; Yewdell, Jonathan W.</creator><creatorcontrib>Wei, Jiajie ; Kishton, Rigel J. ; Angel, Matthew ; Conn, Crystal S. ; Dalla-Venezia, Nicole ; Marcel, Virginie ; Vincent, Anne ; Catez, Frédéric ; Ferré, Sabrina ; Ayadi, Lilia ; Marchand, Virginie ; Dersh, Devin ; Gibbs, James S. ; Ivanov, Ivaylo P. ; Fridlyand, Nathan ; Couté, Yohann ; Diaz, Jean-Jacques ; Qian, Shu-Bing ; Staudt, Louis M. ; Restifo, Nicholas P. ; Yewdell, Jonathan W.</creatorcontrib><description>The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of “untranslated” regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes. [Display omitted] •Ribosome heterogeneity controls MHC class I peptide ligand presentation•RPL6 and RPL28 play opposing roles in viral peptide generation•RPS28 controls MHC class I peptide generation by modulating non-canonical translation•Ribosomal proteins influence CD8+ T cell cancer immunosurveillance Wei et al. show that cells with ribosomes lacking any one of three ribosomal protein subunits have an altered capacity to generate MHC class I peptides for immunosurveillance and that tumor cells can potentially use this mechanism to avoid CD8 T cell immunosurveillance.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2018.12.020</identifier><identifier>PMID: 30712990</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antigen Presentation ; Biochemistry, Molecular Biology ; Cell Line, Tumor ; Coculture Techniques ; Genomics ; HEK293 Cells ; Histocompatibility Antigens Class I - biosynthesis ; Histocompatibility Antigens Class I - immunology ; Host-Pathogen Interactions ; Humans ; Immunologic Surveillance ; immunosurveillance ; Influenza A virus ; Influenza A virus - immunology ; Influenza A virus - pathogenicity ; Life Sciences ; major histocompatibility complex ; Melanoma - immunology ; Melanoma - metabolism ; MHC-I antigen presentation ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular biology ; neoplasm cells ; neoplasms ; polypeptides ; protein synthesis ; ribosomal protein ; ribosomal proteins ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; Ribosome Subunits, Large, Eukaryotic - genetics ; Ribosome Subunits, Large, Eukaryotic - metabolism ; Ribosome Subunits, Small, Eukaryotic - genetics ; Ribosome Subunits, Small, Eukaryotic - metabolism ; ribosomes ; Skin Neoplasms - immunology ; Skin Neoplasms - metabolism ; start codon ; T-lymphocytes ; T-Lymphocytes - immunology ; T-Lymphocytes - metabolism ; T-Lymphocytes - virology ; translation (genetics) ; ubiquitin ; viruses</subject><ispartof>Molecular cell, 2019-03, Vol.73 (6), p.1162-1173.e5</ispartof><rights>2019</rights><rights>Published by Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-af0133ab7e6718b024f8206a9931763e6abc480c05620be6cd3f5f3fcc26b4b23</citedby><cites>FETCH-LOGICAL-c530t-af0133ab7e6718b024f8206a9931763e6abc480c05620be6cd3f5f3fcc26b4b23</cites><orcidid>0000-0002-7914-4319 ; 0000-0003-4616-7685 ; 0000-0002-9557-8221 ; 0000-0003-3896-6196 ; 0000-0002-4553-3535 ; 0000-0002-3826-1906 ; 0000-0001-8255-9091 ; 0000-0002-8537-1139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276518310967$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30712990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02007743$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Jiajie</creatorcontrib><creatorcontrib>Kishton, Rigel J.</creatorcontrib><creatorcontrib>Angel, Matthew</creatorcontrib><creatorcontrib>Conn, Crystal S.</creatorcontrib><creatorcontrib>Dalla-Venezia, Nicole</creatorcontrib><creatorcontrib>Marcel, Virginie</creatorcontrib><creatorcontrib>Vincent, Anne</creatorcontrib><creatorcontrib>Catez, Frédéric</creatorcontrib><creatorcontrib>Ferré, Sabrina</creatorcontrib><creatorcontrib>Ayadi, Lilia</creatorcontrib><creatorcontrib>Marchand, Virginie</creatorcontrib><creatorcontrib>Dersh, Devin</creatorcontrib><creatorcontrib>Gibbs, James S.</creatorcontrib><creatorcontrib>Ivanov, Ivaylo P.</creatorcontrib><creatorcontrib>Fridlyand, Nathan</creatorcontrib><creatorcontrib>Couté, Yohann</creatorcontrib><creatorcontrib>Diaz, Jean-Jacques</creatorcontrib><creatorcontrib>Qian, Shu-Bing</creatorcontrib><creatorcontrib>Staudt, Louis M.</creatorcontrib><creatorcontrib>Restifo, Nicholas P.</creatorcontrib><creatorcontrib>Yewdell, Jonathan W.</creatorcontrib><title>Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of “untranslated” regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes. [Display omitted] •Ribosome heterogeneity controls MHC class I peptide ligand presentation•RPL6 and RPL28 play opposing roles in viral peptide generation•RPS28 controls MHC class I peptide generation by modulating non-canonical translation•Ribosomal proteins influence CD8+ T cell cancer immunosurveillance Wei et al. show that cells with ribosomes lacking any one of three ribosomal protein subunits have an altered capacity to generate MHC class I peptides for immunosurveillance and that tumor cells can potentially use this mechanism to avoid CD8 T cell immunosurveillance.</description><subject>Animals</subject><subject>Antigen Presentation</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell Line, Tumor</subject><subject>Coculture Techniques</subject><subject>Genomics</subject><subject>HEK293 Cells</subject><subject>Histocompatibility Antigens Class I - biosynthesis</subject><subject>Histocompatibility Antigens Class I - immunology</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Immunologic Surveillance</subject><subject>immunosurveillance</subject><subject>Influenza A virus</subject><subject>Influenza A virus - immunology</subject><subject>Influenza A virus - pathogenicity</subject><subject>Life Sciences</subject><subject>major histocompatibility complex</subject><subject>Melanoma - immunology</subject><subject>Melanoma - metabolism</subject><subject>MHC-I antigen presentation</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Molecular biology</subject><subject>neoplasm cells</subject><subject>neoplasms</subject><subject>polypeptides</subject><subject>protein synthesis</subject><subject>ribosomal protein</subject><subject>ribosomal proteins</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>Ribosome Subunits, Large, Eukaryotic - genetics</subject><subject>Ribosome Subunits, Large, Eukaryotic - metabolism</subject><subject>Ribosome Subunits, Small, Eukaryotic - genetics</subject><subject>Ribosome Subunits, Small, Eukaryotic - metabolism</subject><subject>ribosomes</subject><subject>Skin Neoplasms - immunology</subject><subject>Skin Neoplasms - metabolism</subject><subject>start codon</subject><subject>T-lymphocytes</subject><subject>T-Lymphocytes - immunology</subject><subject>T-Lymphocytes - metabolism</subject><subject>T-Lymphocytes - virology</subject><subject>translation (genetics)</subject><subject>ubiquitin</subject><subject>viruses</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAQtRAV_YB_gFCOcNh0_BE7uSBVK9pdaVFLBWfLcSatV0682MlK_HsS7VI-DvTkkee9NzPvEfKWQk6Bystt3gVv0ecMaJlTlgODF-SMQqUWgkrx8lgzJYtTcp7SFoCKoqxekVMOirKqgjPy5d7VIYXO-OwuhgFdn7J7fBi9GTD7vFpmS29SytbZHe4G12B2gz1GM7jQZ22I2brrxj6kMe7ReW96i6_JSWt8wjfH94J8u_70dblabG5v1surzcIWHIaFaYFybmqFUtGyBibakoE0VcWpkhylqa0owUIhGdQobcPbouWttUzWomb8gnw86O7GusPGYj9E4_Uuus7EHzoYp__u9O5RP4S9lrJSUIhJ4MNB4PEf2upqo-e_yVBQSvA9nbDvj8Ni-D5iGnTn0mT-dDGGMWnGGAVgVMDzUKoqUSnFZlVxgNoYUorYPq1BQc8h660-hKznkDVl804T7d2flz-RfqX62xqc_N87jDpZh1M2jYtoB90E9_8JPwH_JLmv</recordid><startdate>20190321</startdate><enddate>20190321</enddate><creator>Wei, Jiajie</creator><creator>Kishton, Rigel J.</creator><creator>Angel, Matthew</creator><creator>Conn, Crystal S.</creator><creator>Dalla-Venezia, Nicole</creator><creator>Marcel, Virginie</creator><creator>Vincent, Anne</creator><creator>Catez, Frédéric</creator><creator>Ferré, Sabrina</creator><creator>Ayadi, Lilia</creator><creator>Marchand, Virginie</creator><creator>Dersh, Devin</creator><creator>Gibbs, James S.</creator><creator>Ivanov, Ivaylo P.</creator><creator>Fridlyand, Nathan</creator><creator>Couté, Yohann</creator><creator>Diaz, Jean-Jacques</creator><creator>Qian, Shu-Bing</creator><creator>Staudt, Louis M.</creator><creator>Restifo, Nicholas P.</creator><creator>Yewdell, Jonathan W.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7914-4319</orcidid><orcidid>https://orcid.org/0000-0003-4616-7685</orcidid><orcidid>https://orcid.org/0000-0002-9557-8221</orcidid><orcidid>https://orcid.org/0000-0003-3896-6196</orcidid><orcidid>https://orcid.org/0000-0002-4553-3535</orcidid><orcidid>https://orcid.org/0000-0002-3826-1906</orcidid><orcidid>https://orcid.org/0000-0001-8255-9091</orcidid><orcidid>https://orcid.org/0000-0002-8537-1139</orcidid></search><sort><creationdate>20190321</creationdate><title>Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance</title><author>Wei, Jiajie ; Kishton, Rigel J. ; Angel, Matthew ; Conn, Crystal S. ; Dalla-Venezia, Nicole ; Marcel, Virginie ; Vincent, Anne ; Catez, Frédéric ; Ferré, Sabrina ; Ayadi, Lilia ; Marchand, Virginie ; Dersh, Devin ; Gibbs, James S. ; Ivanov, Ivaylo P. ; Fridlyand, Nathan ; Couté, Yohann ; Diaz, Jean-Jacques ; Qian, Shu-Bing ; Staudt, Louis M. ; Restifo, Nicholas P. ; Yewdell, Jonathan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-af0133ab7e6718b024f8206a9931763e6abc480c05620be6cd3f5f3fcc26b4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antigen Presentation</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell Line, Tumor</topic><topic>Coculture Techniques</topic><topic>Genomics</topic><topic>HEK293 Cells</topic><topic>Histocompatibility Antigens Class I - biosynthesis</topic><topic>Histocompatibility Antigens Class I - immunology</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Immunologic Surveillance</topic><topic>immunosurveillance</topic><topic>Influenza A virus</topic><topic>Influenza A virus - immunology</topic><topic>Influenza A virus - pathogenicity</topic><topic>Life Sciences</topic><topic>major histocompatibility complex</topic><topic>Melanoma - immunology</topic><topic>Melanoma - metabolism</topic><topic>MHC-I antigen presentation</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Molecular biology</topic><topic>neoplasm cells</topic><topic>neoplasms</topic><topic>polypeptides</topic><topic>protein synthesis</topic><topic>ribosomal protein</topic><topic>ribosomal proteins</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>Ribosome Subunits, Large, Eukaryotic - genetics</topic><topic>Ribosome Subunits, Large, Eukaryotic - metabolism</topic><topic>Ribosome Subunits, Small, Eukaryotic - genetics</topic><topic>Ribosome Subunits, Small, Eukaryotic - metabolism</topic><topic>ribosomes</topic><topic>Skin Neoplasms - immunology</topic><topic>Skin Neoplasms - metabolism</topic><topic>start codon</topic><topic>T-lymphocytes</topic><topic>T-Lymphocytes - immunology</topic><topic>T-Lymphocytes - metabolism</topic><topic>T-Lymphocytes - virology</topic><topic>translation (genetics)</topic><topic>ubiquitin</topic><topic>viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jiajie</creatorcontrib><creatorcontrib>Kishton, Rigel J.</creatorcontrib><creatorcontrib>Angel, Matthew</creatorcontrib><creatorcontrib>Conn, Crystal S.</creatorcontrib><creatorcontrib>Dalla-Venezia, Nicole</creatorcontrib><creatorcontrib>Marcel, Virginie</creatorcontrib><creatorcontrib>Vincent, Anne</creatorcontrib><creatorcontrib>Catez, Frédéric</creatorcontrib><creatorcontrib>Ferré, Sabrina</creatorcontrib><creatorcontrib>Ayadi, Lilia</creatorcontrib><creatorcontrib>Marchand, Virginie</creatorcontrib><creatorcontrib>Dersh, Devin</creatorcontrib><creatorcontrib>Gibbs, James S.</creatorcontrib><creatorcontrib>Ivanov, Ivaylo P.</creatorcontrib><creatorcontrib>Fridlyand, Nathan</creatorcontrib><creatorcontrib>Couté, Yohann</creatorcontrib><creatorcontrib>Diaz, Jean-Jacques</creatorcontrib><creatorcontrib>Qian, Shu-Bing</creatorcontrib><creatorcontrib>Staudt, Louis M.</creatorcontrib><creatorcontrib>Restifo, Nicholas P.</creatorcontrib><creatorcontrib>Yewdell, Jonathan W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jiajie</au><au>Kishton, Rigel J.</au><au>Angel, Matthew</au><au>Conn, Crystal S.</au><au>Dalla-Venezia, Nicole</au><au>Marcel, Virginie</au><au>Vincent, Anne</au><au>Catez, Frédéric</au><au>Ferré, Sabrina</au><au>Ayadi, Lilia</au><au>Marchand, Virginie</au><au>Dersh, Devin</au><au>Gibbs, James S.</au><au>Ivanov, Ivaylo P.</au><au>Fridlyand, Nathan</au><au>Couté, Yohann</au><au>Diaz, Jean-Jacques</au><au>Qian, Shu-Bing</au><au>Staudt, Louis M.</au><au>Restifo, Nicholas P.</au><au>Yewdell, Jonathan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2019-03-21</date><risdate>2019</risdate><volume>73</volume><issue>6</issue><spage>1162</spage><epage>1173.e5</epage><pages>1162-1173.e5</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of “untranslated” regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes. [Display omitted] •Ribosome heterogeneity controls MHC class I peptide ligand presentation•RPL6 and RPL28 play opposing roles in viral peptide generation•RPS28 controls MHC class I peptide generation by modulating non-canonical translation•Ribosomal proteins influence CD8+ T cell cancer immunosurveillance Wei et al. show that cells with ribosomes lacking any one of three ribosomal protein subunits have an altered capacity to generate MHC class I peptides for immunosurveillance and that tumor cells can potentially use this mechanism to avoid CD8 T cell immunosurveillance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30712990</pmid><doi>10.1016/j.molcel.2018.12.020</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7914-4319</orcidid><orcidid>https://orcid.org/0000-0003-4616-7685</orcidid><orcidid>https://orcid.org/0000-0002-9557-8221</orcidid><orcidid>https://orcid.org/0000-0003-3896-6196</orcidid><orcidid>https://orcid.org/0000-0002-4553-3535</orcidid><orcidid>https://orcid.org/0000-0002-3826-1906</orcidid><orcidid>https://orcid.org/0000-0001-8255-9091</orcidid><orcidid>https://orcid.org/0000-0002-8537-1139</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2019-03, Vol.73 (6), p.1162-1173.e5
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697054
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Animals
Antigen Presentation
Biochemistry, Molecular Biology
Cell Line, Tumor
Coculture Techniques
Genomics
HEK293 Cells
Histocompatibility Antigens Class I - biosynthesis
Histocompatibility Antigens Class I - immunology
Host-Pathogen Interactions
Humans
Immunologic Surveillance
immunosurveillance
Influenza A virus
Influenza A virus - immunology
Influenza A virus - pathogenicity
Life Sciences
major histocompatibility complex
Melanoma - immunology
Melanoma - metabolism
MHC-I antigen presentation
Mice, Inbred C57BL
Mice, Transgenic
Molecular biology
neoplasm cells
neoplasms
polypeptides
protein synthesis
ribosomal protein
ribosomal proteins
Ribosomal Proteins - genetics
Ribosomal Proteins - metabolism
Ribosome Subunits, Large, Eukaryotic - genetics
Ribosome Subunits, Large, Eukaryotic - metabolism
Ribosome Subunits, Small, Eukaryotic - genetics
Ribosome Subunits, Small, Eukaryotic - metabolism
ribosomes
Skin Neoplasms - immunology
Skin Neoplasms - metabolism
start codon
T-lymphocytes
T-Lymphocytes - immunology
T-Lymphocytes - metabolism
T-Lymphocytes - virology
translation (genetics)
ubiquitin
viruses
title Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ribosomal%20Proteins%20Regulate%20MHC%20Class%20I%20Peptide%20Generation%20for%20Immunosurveillance&rft.jtitle=Molecular%20cell&rft.au=Wei,%20Jiajie&rft.date=2019-03-21&rft.volume=73&rft.issue=6&rft.spage=1162&rft.epage=1173.e5&rft.pages=1162-1173.e5&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2018.12.020&rft_dat=%3Cproquest_pubme%3E2221002140%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179497721&rft_id=info:pmid/30712990&rft_els_id=S1097276518310967&rfr_iscdi=true