Process Optimization for Compression Molding of Carbon Fiber-Reinforced Thermosetting Polymer

To enhance the quality and mechanical performance of a carbon fiber-reinforced polymer (CFRP) workpiece, this paper prepares a polyacrylonitrile (PAN)-based carbon fiber-reinforced thermosetting polymer (CFRTP) laminated board through compression molding, and carries out orthogonal tests and single-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2019-07, Vol.12 (15), p.2430
Hauptverfasser: Xie, Jiuming, Wang, Shiyu, Cui, Zhongbao, Wu, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 2430
container_title Materials
container_volume 12
creator Xie, Jiuming
Wang, Shiyu
Cui, Zhongbao
Wu, Jin
description To enhance the quality and mechanical performance of a carbon fiber-reinforced polymer (CFRP) workpiece, this paper prepares a polyacrylonitrile (PAN)-based carbon fiber-reinforced thermosetting polymer (CFRTP) laminated board through compression molding, and carries out orthogonal tests and single-factor tests to disclose the effects of different process parameters (i.e., compression temperature, compression pressure, pressure-holding time, and cooling rate) on the mechanical performance of the CFRTP workpieces. Moreover, the process parameters of compression molding were optimized based on the test results. The research results show that: The process parameters of compression molding can be ranked as compression temperature, pressure-holding time, compression pressure, cooling rate, and mold-opening temperature, in descending order of the impact on the mechanical property of the CFRTP; the optimal process parameters for compression molding include a compression temperature of 150 °C, a pressure-holding time of 20 min, a compression pressure of 50 T, a cooling rate of 3.5 °C/min, and a mold-opening temperature of 80 °C. Under this parameter combination, the tensile strength, bending strength, and the interlaminar shear strength (ILSS) of the samples were, respectively, 785.28, 680.36, and 66.15 MPa.
doi_str_mv 10.3390/ma12152430
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6695764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333599589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-2886ef6f99d05088c66323eb35786ebd99571fe95039637c5d304f764f8d2fb63</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoKurGHyADbkQYTXJnMpONIMUXVFqkLiXM46aNzExqMhXqrzelPqrZ3OSej8MJh5BjRi8AJL1sC8ZZyhOgW2SfSSliJpNke-O-R468f6XhALCcy12yBwyEoJLvk5exsxV6H43mvWnNR9Eb20Xaumhg27kLyur9aJvadNPI6mhQuDJsbk2JLn5C0wW2wjqazNC11mPfr8CxbZYtukOyo4vG49HXPCDPtzeTwX08HN09DK6HcZVQ0cc8zwVqoaWsaUrzvBICOGAJaRaEspYyzZhGmVKQArIqrYEmOhOJzmuuSwEH5GrtO1-ULdYVdr0rGjV3pi3cUtnCqL9KZ2Zqat-VEMFaJMHg7MvA2bcF-l61xlfYNEWHduEV5yLLMsmTLKCn_9BXu3Bd-J7iAJCGsLkM1Pmaqpz13qH-CcOoWhWnfosL8Mlm_B_0uyb4BHBKk5k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333599589</pqid></control><display><type>article</type><title>Process Optimization for Compression Molding of Carbon Fiber-Reinforced Thermosetting Polymer</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Xie, Jiuming ; Wang, Shiyu ; Cui, Zhongbao ; Wu, Jin</creator><creatorcontrib>Xie, Jiuming ; Wang, Shiyu ; Cui, Zhongbao ; Wu, Jin</creatorcontrib><description>To enhance the quality and mechanical performance of a carbon fiber-reinforced polymer (CFRP) workpiece, this paper prepares a polyacrylonitrile (PAN)-based carbon fiber-reinforced thermosetting polymer (CFRTP) laminated board through compression molding, and carries out orthogonal tests and single-factor tests to disclose the effects of different process parameters (i.e., compression temperature, compression pressure, pressure-holding time, and cooling rate) on the mechanical performance of the CFRTP workpieces. Moreover, the process parameters of compression molding were optimized based on the test results. The research results show that: The process parameters of compression molding can be ranked as compression temperature, pressure-holding time, compression pressure, cooling rate, and mold-opening temperature, in descending order of the impact on the mechanical property of the CFRTP; the optimal process parameters for compression molding include a compression temperature of 150 °C, a pressure-holding time of 20 min, a compression pressure of 50 T, a cooling rate of 3.5 °C/min, and a mold-opening temperature of 80 °C. Under this parameter combination, the tensile strength, bending strength, and the interlaminar shear strength (ILSS) of the samples were, respectively, 785.28, 680.36, and 66.15 MPa.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12152430</identifier><identifier>PMID: 31366092</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aerospace engineering ; Carbon fiber reinforced plastics ; Carbon fibers ; Composite materials ; Compression tests ; Cooling ; Corrosion fatigue ; Corrosion resistance ; Fatigue strength ; Injection molding ; Optimization ; Polymers ; Pressure molding ; Shear strength ; Shearing ; Sporting goods ; Tensile strength ; Thickness ratio ; Turbine blades ; Wind turbines</subject><ispartof>Materials, 2019-07, Vol.12 (15), p.2430</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-2886ef6f99d05088c66323eb35786ebd99571fe95039637c5d304f764f8d2fb63</citedby><cites>FETCH-LOGICAL-c406t-2886ef6f99d05088c66323eb35786ebd99571fe95039637c5d304f764f8d2fb63</cites><orcidid>0000-0002-6421-9832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695764/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695764/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31366092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Jiuming</creatorcontrib><creatorcontrib>Wang, Shiyu</creatorcontrib><creatorcontrib>Cui, Zhongbao</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><title>Process Optimization for Compression Molding of Carbon Fiber-Reinforced Thermosetting Polymer</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>To enhance the quality and mechanical performance of a carbon fiber-reinforced polymer (CFRP) workpiece, this paper prepares a polyacrylonitrile (PAN)-based carbon fiber-reinforced thermosetting polymer (CFRTP) laminated board through compression molding, and carries out orthogonal tests and single-factor tests to disclose the effects of different process parameters (i.e., compression temperature, compression pressure, pressure-holding time, and cooling rate) on the mechanical performance of the CFRTP workpieces. Moreover, the process parameters of compression molding were optimized based on the test results. The research results show that: The process parameters of compression molding can be ranked as compression temperature, pressure-holding time, compression pressure, cooling rate, and mold-opening temperature, in descending order of the impact on the mechanical property of the CFRTP; the optimal process parameters for compression molding include a compression temperature of 150 °C, a pressure-holding time of 20 min, a compression pressure of 50 T, a cooling rate of 3.5 °C/min, and a mold-opening temperature of 80 °C. Under this parameter combination, the tensile strength, bending strength, and the interlaminar shear strength (ILSS) of the samples were, respectively, 785.28, 680.36, and 66.15 MPa.</description><subject>Aerospace engineering</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Compression tests</subject><subject>Cooling</subject><subject>Corrosion fatigue</subject><subject>Corrosion resistance</subject><subject>Fatigue strength</subject><subject>Injection molding</subject><subject>Optimization</subject><subject>Polymers</subject><subject>Pressure molding</subject><subject>Shear strength</subject><subject>Shearing</subject><subject>Sporting goods</subject><subject>Tensile strength</subject><subject>Thickness ratio</subject><subject>Turbine blades</subject><subject>Wind turbines</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLAzEUhYMoKurGHyADbkQYTXJnMpONIMUXVFqkLiXM46aNzExqMhXqrzelPqrZ3OSej8MJh5BjRi8AJL1sC8ZZyhOgW2SfSSliJpNke-O-R468f6XhALCcy12yBwyEoJLvk5exsxV6H43mvWnNR9Eb20Xaumhg27kLyur9aJvadNPI6mhQuDJsbk2JLn5C0wW2wjqazNC11mPfr8CxbZYtukOyo4vG49HXPCDPtzeTwX08HN09DK6HcZVQ0cc8zwVqoaWsaUrzvBICOGAJaRaEspYyzZhGmVKQArIqrYEmOhOJzmuuSwEH5GrtO1-ULdYVdr0rGjV3pi3cUtnCqL9KZ2Zqat-VEMFaJMHg7MvA2bcF-l61xlfYNEWHduEV5yLLMsmTLKCn_9BXu3Bd-J7iAJCGsLkM1Pmaqpz13qH-CcOoWhWnfosL8Mlm_B_0uyb4BHBKk5k</recordid><startdate>20190730</startdate><enddate>20190730</enddate><creator>Xie, Jiuming</creator><creator>Wang, Shiyu</creator><creator>Cui, Zhongbao</creator><creator>Wu, Jin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6421-9832</orcidid></search><sort><creationdate>20190730</creationdate><title>Process Optimization for Compression Molding of Carbon Fiber-Reinforced Thermosetting Polymer</title><author>Xie, Jiuming ; Wang, Shiyu ; Cui, Zhongbao ; Wu, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-2886ef6f99d05088c66323eb35786ebd99571fe95039637c5d304f764f8d2fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerospace engineering</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Compression tests</topic><topic>Cooling</topic><topic>Corrosion fatigue</topic><topic>Corrosion resistance</topic><topic>Fatigue strength</topic><topic>Injection molding</topic><topic>Optimization</topic><topic>Polymers</topic><topic>Pressure molding</topic><topic>Shear strength</topic><topic>Shearing</topic><topic>Sporting goods</topic><topic>Tensile strength</topic><topic>Thickness ratio</topic><topic>Turbine blades</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Jiuming</creatorcontrib><creatorcontrib>Wang, Shiyu</creatorcontrib><creatorcontrib>Cui, Zhongbao</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Jiuming</au><au>Wang, Shiyu</au><au>Cui, Zhongbao</au><au>Wu, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Optimization for Compression Molding of Carbon Fiber-Reinforced Thermosetting Polymer</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-07-30</date><risdate>2019</risdate><volume>12</volume><issue>15</issue><spage>2430</spage><pages>2430-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>To enhance the quality and mechanical performance of a carbon fiber-reinforced polymer (CFRP) workpiece, this paper prepares a polyacrylonitrile (PAN)-based carbon fiber-reinforced thermosetting polymer (CFRTP) laminated board through compression molding, and carries out orthogonal tests and single-factor tests to disclose the effects of different process parameters (i.e., compression temperature, compression pressure, pressure-holding time, and cooling rate) on the mechanical performance of the CFRTP workpieces. Moreover, the process parameters of compression molding were optimized based on the test results. The research results show that: The process parameters of compression molding can be ranked as compression temperature, pressure-holding time, compression pressure, cooling rate, and mold-opening temperature, in descending order of the impact on the mechanical property of the CFRTP; the optimal process parameters for compression molding include a compression temperature of 150 °C, a pressure-holding time of 20 min, a compression pressure of 50 T, a cooling rate of 3.5 °C/min, and a mold-opening temperature of 80 °C. Under this parameter combination, the tensile strength, bending strength, and the interlaminar shear strength (ILSS) of the samples were, respectively, 785.28, 680.36, and 66.15 MPa.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31366092</pmid><doi>10.3390/ma12152430</doi><orcidid>https://orcid.org/0000-0002-6421-9832</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2019-07, Vol.12 (15), p.2430
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6695764
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Aerospace engineering
Carbon fiber reinforced plastics
Carbon fibers
Composite materials
Compression tests
Cooling
Corrosion fatigue
Corrosion resistance
Fatigue strength
Injection molding
Optimization
Polymers
Pressure molding
Shear strength
Shearing
Sporting goods
Tensile strength
Thickness ratio
Turbine blades
Wind turbines
title Process Optimization for Compression Molding of Carbon Fiber-Reinforced Thermosetting Polymer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Optimization%20for%20Compression%20Molding%20of%20Carbon%20Fiber-Reinforced%20Thermosetting%20Polymer&rft.jtitle=Materials&rft.au=Xie,%20Jiuming&rft.date=2019-07-30&rft.volume=12&rft.issue=15&rft.spage=2430&rft.pages=2430-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12152430&rft_dat=%3Cproquest_pubme%3E2333599589%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333599589&rft_id=info:pmid/31366092&rfr_iscdi=true