Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective

The destruction of mitochondria through macroautophagy (autophagy) has been recognised as a major route of mitochondrial protein degradation since its discovery more than 50 years ago, but fundamental questions remain unanswered. First, how much mitochondrial protein turnover occurs through auto-pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autophagy 2019-09, Vol.15 (9), p.1592-1605
Hauptverfasser: Vincow, Evelyn S., Thomas, Ruth E., Merrihew, Gennifer E., Shulman, Nicholas J., Bammler, Theo K., MacDonald, James W., MacCoss, Michael J., Pallanck, Leo J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1605
container_issue 9
container_start_page 1592
container_title Autophagy
container_volume 15
creator Vincow, Evelyn S.
Thomas, Ruth E.
Merrihew, Gennifer E.
Shulman, Nicholas J.
Bammler, Theo K.
MacDonald, James W.
MacCoss, Michael J.
Pallanck, Leo J.
description The destruction of mitochondria through macroautophagy (autophagy) has been recognised as a major route of mitochondrial protein degradation since its discovery more than 50 years ago, but fundamental questions remain unanswered. First, how much mitochondrial protein turnover occurs through auto-phagy? Mitochondrial proteins are also degraded by nonautophagic mechanisms, and the proportion of mitochondrial protein turnover that occurs through autophagy is still unknown. Second, does auto-phagy degrade mitochondrial proteins uniformly or selectively? Autophagy was originally thought to degrade all mitochondrial proteins at the same rate, but recent work suggests that mitochondrial autophagy may be protein selective. To investigate these questions, we used a proteomics-based approach in the fruit fly Drosophila melanogaster, comparing mitochondrial protein turnover rates in autophagy-deficient Atg7 mutants and controls. We found that ~35% of mitochondrial protein turnover occurred via autophagy. Similar analyses using parkin mutants revealed that parkin-dependent mitophagy accounted for ~25% of mitochondrial protein turnover, suggesting that most mitochondrial autophagy specifically eliminates dysfunctional mitochondria. We also found that our results were incompatible with uniform autophagic turnover of mitochondrial proteins and consistent with protein-selective autophagy. In particular, the autophagic turnover rates of individual mitochondrial proteins varied widely, and only a small amount of the variation could be attributed to tissue differences in mitochondrial composition and autophagy rate. Furthermore, analyses comparing autophagy-deficient and control human fibroblasts revealed diverse autophagy-dependent turnover rates even in homogeneous cells. In summary, our work indicates that autophagy acts selectively on mitochondrial proteins, and that most mitochondrial protein turnover occurs through non-autophagic processes. Abbreviations: Atg5: Autophagy-related 5 (Drosophila); ATG5: autophagy related 5 (human); Atg7: Autophagy-related 7 (Drosophila); ATG7: autophagy related 7 (human); DNA: deoxyribonucleic acid; ER: endoplasmic reticulum; GFP: green fluorescent protein; MS: mass spectrometry; park: parkin (Drosophila); Pink1: PTEN-induced putative kinase 1 (Drosophila); PINK1: PTEN-induced kinase 1 (human); PRKN: parkin RBR E3 ubiquitin protein ligase (human); RNA: ribonucleic acid; SD: standard deviation; Ub: ubiquitin/ubiquitinated; WT: wild-type; Y
doi_str_mv 10.1080/15548627.2019.1586258
format Article
fullrecord <record><control><sourceid>pubmed_infor</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6693455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30865561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-d48dec824d6d4890dffe4258f15c68cb3ab85ee20e9e39c57049ab51f3acd6c23</originalsourceid><addsrcrecordid>eNp9kN1OKyEUhYnR-P8IGl5gKgwDZW6MxviXmJyb4zWhsLGYKUyAVvv2h6ba6M25YmWz1trZH0IXlEwokeSKct5J0U4nLaH9hPKqudxDx5t5IwXj-zvdTo_QSc7vhDAh-_YQHTEiBeeCHiN_uyxxnOu3NdbGxGUoGbuYsB7HFD_9QhcY1jgGaMrcJ4ujwwtfopnHYJPXA662Aj7gskwhrqAmg8U-7-YZBjDFr-AMHTg9ZDj_ek_R68P937un5uXP4_Pd7UtjOOtKYztpwci2s6LKnljnoKunOcqNkGbG9ExygJZAD6w3fEq6Xs84dUwbK0zLTtH1tndczhZgDYSS9KDGVI9JaxW1V79_gp-rt7hSQvSs47wW8G2BSTHnBG6XpURt2Ktv9mrDXn2xr7nLn4t3qW_Y1XCzNfhQES_0R0yDVUWvh5hc0sH4rNj_d_wDZV2Ysg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Vincow, Evelyn S. ; Thomas, Ruth E. ; Merrihew, Gennifer E. ; Shulman, Nicholas J. ; Bammler, Theo K. ; MacDonald, James W. ; MacCoss, Michael J. ; Pallanck, Leo J.</creator><creatorcontrib>Vincow, Evelyn S. ; Thomas, Ruth E. ; Merrihew, Gennifer E. ; Shulman, Nicholas J. ; Bammler, Theo K. ; MacDonald, James W. ; MacCoss, Michael J. ; Pallanck, Leo J.</creatorcontrib><description>The destruction of mitochondria through macroautophagy (autophagy) has been recognised as a major route of mitochondrial protein degradation since its discovery more than 50 years ago, but fundamental questions remain unanswered. First, how much mitochondrial protein turnover occurs through auto-phagy? Mitochondrial proteins are also degraded by nonautophagic mechanisms, and the proportion of mitochondrial protein turnover that occurs through autophagy is still unknown. Second, does auto-phagy degrade mitochondrial proteins uniformly or selectively? Autophagy was originally thought to degrade all mitochondrial proteins at the same rate, but recent work suggests that mitochondrial autophagy may be protein selective. To investigate these questions, we used a proteomics-based approach in the fruit fly Drosophila melanogaster, comparing mitochondrial protein turnover rates in autophagy-deficient Atg7 mutants and controls. We found that ~35% of mitochondrial protein turnover occurred via autophagy. Similar analyses using parkin mutants revealed that parkin-dependent mitophagy accounted for ~25% of mitochondrial protein turnover, suggesting that most mitochondrial autophagy specifically eliminates dysfunctional mitochondria. We also found that our results were incompatible with uniform autophagic turnover of mitochondrial proteins and consistent with protein-selective autophagy. In particular, the autophagic turnover rates of individual mitochondrial proteins varied widely, and only a small amount of the variation could be attributed to tissue differences in mitochondrial composition and autophagy rate. Furthermore, analyses comparing autophagy-deficient and control human fibroblasts revealed diverse autophagy-dependent turnover rates even in homogeneous cells. In summary, our work indicates that autophagy acts selectively on mitochondrial proteins, and that most mitochondrial protein turnover occurs through non-autophagic processes. Abbreviations: Atg5: Autophagy-related 5 (Drosophila); ATG5: autophagy related 5 (human); Atg7: Autophagy-related 7 (Drosophila); ATG7: autophagy related 7 (human); DNA: deoxyribonucleic acid; ER: endoplasmic reticulum; GFP: green fluorescent protein; MS: mass spectrometry; park: parkin (Drosophila); Pink1: PTEN-induced putative kinase 1 (Drosophila); PINK1: PTEN-induced kinase 1 (human); PRKN: parkin RBR E3 ubiquitin protein ligase (human); RNA: ribonucleic acid; SD: standard deviation; Ub: ubiquitin/ubiquitinated; WT: wild-type; YME1L: YME1 like ATPase (Drosophila); YME1L1: YME1 like 1 ATPase (human)</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.1080/15548627.2019.1586258</identifier><identifier>PMID: 30865561</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Animals ; Autophagy ; Autophagy-Related Protein 5 - metabolism ; Autophagy-Related Protein 7 - genetics ; Autophagy-Related Protein 7 - metabolism ; Drosophila ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Fibroblasts - metabolism ; Humans ; mitochondria ; Mitochondria - metabolism ; Mitochondrial Proteins - metabolism ; mitophagy ; Mitophagy - genetics ; Models, Genetic ; Organ Specificity - genetics ; protein degradation ; protein turnover ; Proteolysis ; Proteome - genetics ; Proteome - metabolism ; proteomics ; Research Paper ; stable isotope labelling ; turnover rate ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Autophagy, 2019-09, Vol.15 (9), p.1592-1605</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-d48dec824d6d4890dffe4258f15c68cb3ab85ee20e9e39c57049ab51f3acd6c23</citedby><cites>FETCH-LOGICAL-c534t-d48dec824d6d4890dffe4258f15c68cb3ab85ee20e9e39c57049ab51f3acd6c23</cites><orcidid>0000-0002-7449-3173 ; 0000-0002-7328-7626 ; 0000-0001-9648-2339 ; 0000-0003-4903-0318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693455/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693455/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30865561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vincow, Evelyn S.</creatorcontrib><creatorcontrib>Thomas, Ruth E.</creatorcontrib><creatorcontrib>Merrihew, Gennifer E.</creatorcontrib><creatorcontrib>Shulman, Nicholas J.</creatorcontrib><creatorcontrib>Bammler, Theo K.</creatorcontrib><creatorcontrib>MacDonald, James W.</creatorcontrib><creatorcontrib>MacCoss, Michael J.</creatorcontrib><creatorcontrib>Pallanck, Leo J.</creatorcontrib><title>Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>The destruction of mitochondria through macroautophagy (autophagy) has been recognised as a major route of mitochondrial protein degradation since its discovery more than 50 years ago, but fundamental questions remain unanswered. First, how much mitochondrial protein turnover occurs through auto-phagy? Mitochondrial proteins are also degraded by nonautophagic mechanisms, and the proportion of mitochondrial protein turnover that occurs through autophagy is still unknown. Second, does auto-phagy degrade mitochondrial proteins uniformly or selectively? Autophagy was originally thought to degrade all mitochondrial proteins at the same rate, but recent work suggests that mitochondrial autophagy may be protein selective. To investigate these questions, we used a proteomics-based approach in the fruit fly Drosophila melanogaster, comparing mitochondrial protein turnover rates in autophagy-deficient Atg7 mutants and controls. We found that ~35% of mitochondrial protein turnover occurred via autophagy. Similar analyses using parkin mutants revealed that parkin-dependent mitophagy accounted for ~25% of mitochondrial protein turnover, suggesting that most mitochondrial autophagy specifically eliminates dysfunctional mitochondria. We also found that our results were incompatible with uniform autophagic turnover of mitochondrial proteins and consistent with protein-selective autophagy. In particular, the autophagic turnover rates of individual mitochondrial proteins varied widely, and only a small amount of the variation could be attributed to tissue differences in mitochondrial composition and autophagy rate. Furthermore, analyses comparing autophagy-deficient and control human fibroblasts revealed diverse autophagy-dependent turnover rates even in homogeneous cells. In summary, our work indicates that autophagy acts selectively on mitochondrial proteins, and that most mitochondrial protein turnover occurs through non-autophagic processes. Abbreviations: Atg5: Autophagy-related 5 (Drosophila); ATG5: autophagy related 5 (human); Atg7: Autophagy-related 7 (Drosophila); ATG7: autophagy related 7 (human); DNA: deoxyribonucleic acid; ER: endoplasmic reticulum; GFP: green fluorescent protein; MS: mass spectrometry; park: parkin (Drosophila); Pink1: PTEN-induced putative kinase 1 (Drosophila); PINK1: PTEN-induced kinase 1 (human); PRKN: parkin RBR E3 ubiquitin protein ligase (human); RNA: ribonucleic acid; SD: standard deviation; Ub: ubiquitin/ubiquitinated; WT: wild-type; YME1L: YME1 like ATPase (Drosophila); YME1L1: YME1 like 1 ATPase (human)</description><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 5 - metabolism</subject><subject>Autophagy-Related Protein 7 - genetics</subject><subject>Autophagy-Related Protein 7 - metabolism</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>mitophagy</subject><subject>Mitophagy - genetics</subject><subject>Models, Genetic</subject><subject>Organ Specificity - genetics</subject><subject>protein degradation</subject><subject>protein turnover</subject><subject>Proteolysis</subject><subject>Proteome - genetics</subject><subject>Proteome - metabolism</subject><subject>proteomics</subject><subject>Research Paper</subject><subject>stable isotope labelling</subject><subject>turnover rate</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN1OKyEUhYnR-P8IGl5gKgwDZW6MxviXmJyb4zWhsLGYKUyAVvv2h6ba6M25YmWz1trZH0IXlEwokeSKct5J0U4nLaH9hPKqudxDx5t5IwXj-zvdTo_QSc7vhDAh-_YQHTEiBeeCHiN_uyxxnOu3NdbGxGUoGbuYsB7HFD_9QhcY1jgGaMrcJ4ujwwtfopnHYJPXA662Aj7gskwhrqAmg8U-7-YZBjDFr-AMHTg9ZDj_ek_R68P937un5uXP4_Pd7UtjOOtKYztpwci2s6LKnljnoKunOcqNkGbG9ExygJZAD6w3fEq6Xs84dUwbK0zLTtH1tndczhZgDYSS9KDGVI9JaxW1V79_gp-rt7hSQvSs47wW8G2BSTHnBG6XpURt2Ktv9mrDXn2xr7nLn4t3qW_Y1XCzNfhQES_0R0yDVUWvh5hc0sH4rNj_d_wDZV2Ysg</recordid><startdate>20190902</startdate><enddate>20190902</enddate><creator>Vincow, Evelyn S.</creator><creator>Thomas, Ruth E.</creator><creator>Merrihew, Gennifer E.</creator><creator>Shulman, Nicholas J.</creator><creator>Bammler, Theo K.</creator><creator>MacDonald, James W.</creator><creator>MacCoss, Michael J.</creator><creator>Pallanck, Leo J.</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7449-3173</orcidid><orcidid>https://orcid.org/0000-0002-7328-7626</orcidid><orcidid>https://orcid.org/0000-0001-9648-2339</orcidid><orcidid>https://orcid.org/0000-0003-4903-0318</orcidid></search><sort><creationdate>20190902</creationdate><title>Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective</title><author>Vincow, Evelyn S. ; Thomas, Ruth E. ; Merrihew, Gennifer E. ; Shulman, Nicholas J. ; Bammler, Theo K. ; MacDonald, James W. ; MacCoss, Michael J. ; Pallanck, Leo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-d48dec824d6d4890dffe4258f15c68cb3ab85ee20e9e39c57049ab51f3acd6c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 5 - metabolism</topic><topic>Autophagy-Related Protein 7 - genetics</topic><topic>Autophagy-Related Protein 7 - metabolism</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>mitophagy</topic><topic>Mitophagy - genetics</topic><topic>Models, Genetic</topic><topic>Organ Specificity - genetics</topic><topic>protein degradation</topic><topic>protein turnover</topic><topic>Proteolysis</topic><topic>Proteome - genetics</topic><topic>Proteome - metabolism</topic><topic>proteomics</topic><topic>Research Paper</topic><topic>stable isotope labelling</topic><topic>turnover rate</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vincow, Evelyn S.</creatorcontrib><creatorcontrib>Thomas, Ruth E.</creatorcontrib><creatorcontrib>Merrihew, Gennifer E.</creatorcontrib><creatorcontrib>Shulman, Nicholas J.</creatorcontrib><creatorcontrib>Bammler, Theo K.</creatorcontrib><creatorcontrib>MacDonald, James W.</creatorcontrib><creatorcontrib>MacCoss, Michael J.</creatorcontrib><creatorcontrib>Pallanck, Leo J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vincow, Evelyn S.</au><au>Thomas, Ruth E.</au><au>Merrihew, Gennifer E.</au><au>Shulman, Nicholas J.</au><au>Bammler, Theo K.</au><au>MacDonald, James W.</au><au>MacCoss, Michael J.</au><au>Pallanck, Leo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2019-09-02</date><risdate>2019</risdate><volume>15</volume><issue>9</issue><spage>1592</spage><epage>1605</epage><pages>1592-1605</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>The destruction of mitochondria through macroautophagy (autophagy) has been recognised as a major route of mitochondrial protein degradation since its discovery more than 50 years ago, but fundamental questions remain unanswered. First, how much mitochondrial protein turnover occurs through auto-phagy? Mitochondrial proteins are also degraded by nonautophagic mechanisms, and the proportion of mitochondrial protein turnover that occurs through autophagy is still unknown. Second, does auto-phagy degrade mitochondrial proteins uniformly or selectively? Autophagy was originally thought to degrade all mitochondrial proteins at the same rate, but recent work suggests that mitochondrial autophagy may be protein selective. To investigate these questions, we used a proteomics-based approach in the fruit fly Drosophila melanogaster, comparing mitochondrial protein turnover rates in autophagy-deficient Atg7 mutants and controls. We found that ~35% of mitochondrial protein turnover occurred via autophagy. Similar analyses using parkin mutants revealed that parkin-dependent mitophagy accounted for ~25% of mitochondrial protein turnover, suggesting that most mitochondrial autophagy specifically eliminates dysfunctional mitochondria. We also found that our results were incompatible with uniform autophagic turnover of mitochondrial proteins and consistent with protein-selective autophagy. In particular, the autophagic turnover rates of individual mitochondrial proteins varied widely, and only a small amount of the variation could be attributed to tissue differences in mitochondrial composition and autophagy rate. Furthermore, analyses comparing autophagy-deficient and control human fibroblasts revealed diverse autophagy-dependent turnover rates even in homogeneous cells. In summary, our work indicates that autophagy acts selectively on mitochondrial proteins, and that most mitochondrial protein turnover occurs through non-autophagic processes. Abbreviations: Atg5: Autophagy-related 5 (Drosophila); ATG5: autophagy related 5 (human); Atg7: Autophagy-related 7 (Drosophila); ATG7: autophagy related 7 (human); DNA: deoxyribonucleic acid; ER: endoplasmic reticulum; GFP: green fluorescent protein; MS: mass spectrometry; park: parkin (Drosophila); Pink1: PTEN-induced putative kinase 1 (Drosophila); PINK1: PTEN-induced kinase 1 (human); PRKN: parkin RBR E3 ubiquitin protein ligase (human); RNA: ribonucleic acid; SD: standard deviation; Ub: ubiquitin/ubiquitinated; WT: wild-type; YME1L: YME1 like ATPase (Drosophila); YME1L1: YME1 like 1 ATPase (human)</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>30865561</pmid><doi>10.1080/15548627.2019.1586258</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7449-3173</orcidid><orcidid>https://orcid.org/0000-0002-7328-7626</orcidid><orcidid>https://orcid.org/0000-0001-9648-2339</orcidid><orcidid>https://orcid.org/0000-0003-4903-0318</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8627
ispartof Autophagy, 2019-09, Vol.15 (9), p.1592-1605
issn 1554-8627
1554-8635
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6693455
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Autophagy
Autophagy-Related Protein 5 - metabolism
Autophagy-Related Protein 7 - genetics
Autophagy-Related Protein 7 - metabolism
Drosophila
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Fibroblasts - metabolism
Humans
mitochondria
Mitochondria - metabolism
Mitochondrial Proteins - metabolism
mitophagy
Mitophagy - genetics
Models, Genetic
Organ Specificity - genetics
protein degradation
protein turnover
Proteolysis
Proteome - genetics
Proteome - metabolism
proteomics
Research Paper
stable isotope labelling
turnover rate
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
title Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy%20accounts%20for%20approximately%20one-third%20of%20mitochondrial%20protein%20turnover%20and%20is%20protein%20selective&rft.jtitle=Autophagy&rft.au=Vincow,%20Evelyn%20S.&rft.date=2019-09-02&rft.volume=15&rft.issue=9&rft.spage=1592&rft.epage=1605&rft.pages=1592-1605&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080/15548627.2019.1586258&rft_dat=%3Cpubmed_infor%3E30865561%3C/pubmed_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30865561&rfr_iscdi=true