M3Drop: dropout-based feature selection for scRNASeq

Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical noise. We pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2019-08, Vol.35 (16), p.2865-2867
Hauptverfasser: Andrews, Tallulah S, Hemberg, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2867
container_issue 16
container_start_page 2865
container_title Bioinformatics (Oxford, England)
container_volume 35
creator Andrews, Tallulah S
Hemberg, Martin
description Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical noise. We present M3Drop, an R package that implements popular existing feature selection methods and two novel methods which take advantage of the prevalence of zeros (dropouts) in scRNASeq data to identify features. We show these new methods outperform existing methods on simulated and real datasets. M3Drop is freely available on github as an R package and is compatible with other popular scRNASeq tools: https://github.com/tallulandrews/M3Drop. Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/bty1044
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6691329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161701486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-586929dbc41d47556adf4081a9a9049fd25283c7515bd83dcc61cc45047385fb3</originalsourceid><addsrcrecordid>eNpVkFtLAzEQhYMotlb_QtlHX9Ymm8smPgilXqEqeHkO2SSrke2mTbJC_70rrcW-zAzMmfMNB4AxghcICjypnHdt7cNCJafjpEprBAk5AEOEWZkTjtDhboZ4AE5i_IIQUkjZMRhgSAUkXAwBecTXwS8vM9NX36W8UtGarLYqdcFm0TZWJ-fbrGdlUb88TV_t6hQc1aqJ9mzbR-D99uZtdp_Pn-8eZtN5rntoyilnohCm0gQZUlLKlKkJ5EgJ1dNFbQpacKxLimhlODZaM6Q1oZCUmNO6wiNwtfFddtXCGm3bFFQjl8EtVFhLr5zc37TuU374b8mYQLgQvcH51iD4VWdjkgsXtW0a1VrfRVkghkqICGe9lG2kOvgYg613GATlb-RyP3K5jbw_HP9_cnf2lzH-Ac95grI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161701486</pqid></control><display><type>article</type><title>M3Drop: dropout-based feature selection for scRNASeq</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Andrews, Tallulah S ; Hemberg, Martin</creator><contributor>Birol, Inanc</contributor><creatorcontrib>Andrews, Tallulah S ; Hemberg, Martin ; Birol, Inanc</creatorcontrib><description>Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical noise. We present M3Drop, an R package that implements popular existing feature selection methods and two novel methods which take advantage of the prevalence of zeros (dropouts) in scRNASeq data to identify features. We show these new methods outperform existing methods on simulated and real datasets. M3Drop is freely available on github as an R package and is compatible with other popular scRNASeq tools: https://github.com/tallulandrews/M3Drop. Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bty1044</identifier><identifier>PMID: 30590489</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Notes</subject><ispartof>Bioinformatics (Oxford, England), 2019-08, Vol.35 (16), p.2865-2867</ispartof><rights>The Author(s) 2018. Published by Oxford University Press.</rights><rights>The Author(s) 2018. Published by Oxford University Press. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-586929dbc41d47556adf4081a9a9049fd25283c7515bd83dcc61cc45047385fb3</citedby><cites>FETCH-LOGICAL-c480t-586929dbc41d47556adf4081a9a9049fd25283c7515bd83dcc61cc45047385fb3</cites><orcidid>0000-0001-8895-5239 ; 0000-0003-1120-2196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691329/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691329/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30590489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Birol, Inanc</contributor><creatorcontrib>Andrews, Tallulah S</creatorcontrib><creatorcontrib>Hemberg, Martin</creatorcontrib><title>M3Drop: dropout-based feature selection for scRNASeq</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical noise. We present M3Drop, an R package that implements popular existing feature selection methods and two novel methods which take advantage of the prevalence of zeros (dropouts) in scRNASeq data to identify features. We show these new methods outperform existing methods on simulated and real datasets. M3Drop is freely available on github as an R package and is compatible with other popular scRNASeq tools: https://github.com/tallulandrews/M3Drop. Supplementary data are available at Bioinformatics online.</description><subject>Applications Notes</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkFtLAzEQhYMotlb_QtlHX9Ymm8smPgilXqEqeHkO2SSrke2mTbJC_70rrcW-zAzMmfMNB4AxghcICjypnHdt7cNCJafjpEprBAk5AEOEWZkTjtDhboZ4AE5i_IIQUkjZMRhgSAUkXAwBecTXwS8vM9NX36W8UtGarLYqdcFm0TZWJ-fbrGdlUb88TV_t6hQc1aqJ9mzbR-D99uZtdp_Pn-8eZtN5rntoyilnohCm0gQZUlLKlKkJ5EgJ1dNFbQpacKxLimhlODZaM6Q1oZCUmNO6wiNwtfFddtXCGm3bFFQjl8EtVFhLr5zc37TuU374b8mYQLgQvcH51iD4VWdjkgsXtW0a1VrfRVkghkqICGe9lG2kOvgYg613GATlb-RyP3K5jbw_HP9_cnf2lzH-Ac95grI</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Andrews, Tallulah S</creator><creator>Hemberg, Martin</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8895-5239</orcidid><orcidid>https://orcid.org/0000-0003-1120-2196</orcidid></search><sort><creationdate>20190815</creationdate><title>M3Drop: dropout-based feature selection for scRNASeq</title><author>Andrews, Tallulah S ; Hemberg, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-586929dbc41d47556adf4081a9a9049fd25283c7515bd83dcc61cc45047385fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications Notes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrews, Tallulah S</creatorcontrib><creatorcontrib>Hemberg, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrews, Tallulah S</au><au>Hemberg, Martin</au><au>Birol, Inanc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M3Drop: dropout-based feature selection for scRNASeq</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>35</volume><issue>16</issue><spage>2865</spage><epage>2867</epage><pages>2865-2867</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical noise. We present M3Drop, an R package that implements popular existing feature selection methods and two novel methods which take advantage of the prevalence of zeros (dropouts) in scRNASeq data to identify features. We show these new methods outperform existing methods on simulated and real datasets. M3Drop is freely available on github as an R package and is compatible with other popular scRNASeq tools: https://github.com/tallulandrews/M3Drop. Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30590489</pmid><doi>10.1093/bioinformatics/bty1044</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-8895-5239</orcidid><orcidid>https://orcid.org/0000-0003-1120-2196</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2019-08, Vol.35 (16), p.2865-2867
issn 1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6691329
source Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Applications Notes
title M3Drop: dropout-based feature selection for scRNASeq
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M3Drop:%20dropout-based%20feature%20selection%20for%20scRNASeq&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Andrews,%20Tallulah%20S&rft.date=2019-08-15&rft.volume=35&rft.issue=16&rft.spage=2865&rft.epage=2867&rft.pages=2865-2867&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/bty1044&rft_dat=%3Cproquest_pubme%3E2161701486%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161701486&rft_id=info:pmid/30590489&rfr_iscdi=true