M3Drop: dropout-based feature selection for scRNASeq
Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical noise. We pre...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2019-08, Vol.35 (16), p.2865-2867 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2867 |
---|---|
container_issue | 16 |
container_start_page | 2865 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 35 |
creator | Andrews, Tallulah S Hemberg, Martin |
description | Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical noise.
We present M3Drop, an R package that implements popular existing feature selection methods and two novel methods which take advantage of the prevalence of zeros (dropouts) in scRNASeq data to identify features. We show these new methods outperform existing methods on simulated and real datasets.
M3Drop is freely available on github as an R package and is compatible with other popular scRNASeq tools: https://github.com/tallulandrews/M3Drop.
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/bty1044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6691329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161701486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-586929dbc41d47556adf4081a9a9049fd25283c7515bd83dcc61cc45047385fb3</originalsourceid><addsrcrecordid>eNpVkFtLAzEQhYMotlb_QtlHX9Ymm8smPgilXqEqeHkO2SSrke2mTbJC_70rrcW-zAzMmfMNB4AxghcICjypnHdt7cNCJafjpEprBAk5AEOEWZkTjtDhboZ4AE5i_IIQUkjZMRhgSAUkXAwBecTXwS8vM9NX36W8UtGarLYqdcFm0TZWJ-fbrGdlUb88TV_t6hQc1aqJ9mzbR-D99uZtdp_Pn-8eZtN5rntoyilnohCm0gQZUlLKlKkJ5EgJ1dNFbQpacKxLimhlODZaM6Q1oZCUmNO6wiNwtfFddtXCGm3bFFQjl8EtVFhLr5zc37TuU374b8mYQLgQvcH51iD4VWdjkgsXtW0a1VrfRVkghkqICGe9lG2kOvgYg613GATlb-RyP3K5jbw_HP9_cnf2lzH-Ac95grI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161701486</pqid></control><display><type>article</type><title>M3Drop: dropout-based feature selection for scRNASeq</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Andrews, Tallulah S ; Hemberg, Martin</creator><contributor>Birol, Inanc</contributor><creatorcontrib>Andrews, Tallulah S ; Hemberg, Martin ; Birol, Inanc</creatorcontrib><description>Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical noise.
We present M3Drop, an R package that implements popular existing feature selection methods and two novel methods which take advantage of the prevalence of zeros (dropouts) in scRNASeq data to identify features. We show these new methods outperform existing methods on simulated and real datasets.
M3Drop is freely available on github as an R package and is compatible with other popular scRNASeq tools: https://github.com/tallulandrews/M3Drop.
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bty1044</identifier><identifier>PMID: 30590489</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Notes</subject><ispartof>Bioinformatics (Oxford, England), 2019-08, Vol.35 (16), p.2865-2867</ispartof><rights>The Author(s) 2018. Published by Oxford University Press.</rights><rights>The Author(s) 2018. Published by Oxford University Press. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-586929dbc41d47556adf4081a9a9049fd25283c7515bd83dcc61cc45047385fb3</citedby><cites>FETCH-LOGICAL-c480t-586929dbc41d47556adf4081a9a9049fd25283c7515bd83dcc61cc45047385fb3</cites><orcidid>0000-0001-8895-5239 ; 0000-0003-1120-2196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691329/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691329/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30590489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Birol, Inanc</contributor><creatorcontrib>Andrews, Tallulah S</creatorcontrib><creatorcontrib>Hemberg, Martin</creatorcontrib><title>M3Drop: dropout-based feature selection for scRNASeq</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical noise.
We present M3Drop, an R package that implements popular existing feature selection methods and two novel methods which take advantage of the prevalence of zeros (dropouts) in scRNASeq data to identify features. We show these new methods outperform existing methods on simulated and real datasets.
M3Drop is freely available on github as an R package and is compatible with other popular scRNASeq tools: https://github.com/tallulandrews/M3Drop.
Supplementary data are available at Bioinformatics online.</description><subject>Applications Notes</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkFtLAzEQhYMotlb_QtlHX9Ymm8smPgilXqEqeHkO2SSrke2mTbJC_70rrcW-zAzMmfMNB4AxghcICjypnHdt7cNCJafjpEprBAk5AEOEWZkTjtDhboZ4AE5i_IIQUkjZMRhgSAUkXAwBecTXwS8vM9NX36W8UtGarLYqdcFm0TZWJ-fbrGdlUb88TV_t6hQc1aqJ9mzbR-D99uZtdp_Pn-8eZtN5rntoyilnohCm0gQZUlLKlKkJ5EgJ1dNFbQpacKxLimhlODZaM6Q1oZCUmNO6wiNwtfFddtXCGm3bFFQjl8EtVFhLr5zc37TuU374b8mYQLgQvcH51iD4VWdjkgsXtW0a1VrfRVkghkqICGe9lG2kOvgYg613GATlb-RyP3K5jbw_HP9_cnf2lzH-Ac95grI</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Andrews, Tallulah S</creator><creator>Hemberg, Martin</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8895-5239</orcidid><orcidid>https://orcid.org/0000-0003-1120-2196</orcidid></search><sort><creationdate>20190815</creationdate><title>M3Drop: dropout-based feature selection for scRNASeq</title><author>Andrews, Tallulah S ; Hemberg, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-586929dbc41d47556adf4081a9a9049fd25283c7515bd83dcc61cc45047385fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications Notes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrews, Tallulah S</creatorcontrib><creatorcontrib>Hemberg, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrews, Tallulah S</au><au>Hemberg, Martin</au><au>Birol, Inanc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M3Drop: dropout-based feature selection for scRNASeq</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>35</volume><issue>16</issue><spage>2865</spage><epage>2867</epage><pages>2865-2867</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Most genomes contain thousands of genes, but for most functional responses, only a subset of those genes are relevant. To facilitate many single-cell RNASeq (scRNASeq) analyses the set of genes is often reduced through feature selection, i.e. by removing genes only subject to technical noise.
We present M3Drop, an R package that implements popular existing feature selection methods and two novel methods which take advantage of the prevalence of zeros (dropouts) in scRNASeq data to identify features. We show these new methods outperform existing methods on simulated and real datasets.
M3Drop is freely available on github as an R package and is compatible with other popular scRNASeq tools: https://github.com/tallulandrews/M3Drop.
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30590489</pmid><doi>10.1093/bioinformatics/bty1044</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-8895-5239</orcidid><orcidid>https://orcid.org/0000-0003-1120-2196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2019-08, Vol.35 (16), p.2865-2867 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6691329 |
source | Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Applications Notes |
title | M3Drop: dropout-based feature selection for scRNASeq |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M3Drop:%20dropout-based%20feature%20selection%20for%20scRNASeq&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Andrews,%20Tallulah%20S&rft.date=2019-08-15&rft.volume=35&rft.issue=16&rft.spage=2865&rft.epage=2867&rft.pages=2865-2867&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/bty1044&rft_dat=%3Cproquest_pubme%3E2161701486%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161701486&rft_id=info:pmid/30590489&rfr_iscdi=true |