Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia network

Beta frequency oscillations (15 to 35 Hz) in cortical and basal ganglia circuits become abnormally synchronized in Parkinson’s disease (PD). How excessive beta oscillations emerge in these circuits is unclear. We addressed this issue by defining the firing properties of basal ganglia neurons around...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-08, Vol.116 (32), p.16095-16104
Hauptverfasser: Cagnan, Hayriye, Mallet, Nicolas, Moll, Christian K. E., Gulberti, Alessandro, Holt, Abbey B., Westphal, Manfred, Gerloff, Christian, Engel, Andreas K., Hamel, Wolfgang, Magill, Peter J., Brown, Peter, Sharott, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16104
container_issue 32
container_start_page 16095
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Cagnan, Hayriye
Mallet, Nicolas
Moll, Christian K. E.
Gulberti, Alessandro
Holt, Abbey B.
Westphal, Manfred
Gerloff, Christian
Engel, Andreas K.
Hamel, Wolfgang
Magill, Peter J.
Brown, Peter
Sharott, Andrew
description Beta frequency oscillations (15 to 35 Hz) in cortical and basal ganglia circuits become abnormally synchronized in Parkinson’s disease (PD). How excessive beta oscillations emerge in these circuits is unclear. We addressed this issue by defining the firing properties of basal ganglia neurons around the emergence of cortical beta bursts (β bursts), transient (50 to 350 ms) increases in the beta amplitude of cortical signals. In PD patients, the phase locking of background spiking activity in the subthalamic nucleus (STN) to frontal electroencephalograms preceded the onset and followed the temporal profile of cortical β bursts, with conditions of synchronization consistent within and across bursts. Neuronal ensemble recordings in multiple basal ganglia structures of parkinsonian rats revealed that these dynamics were recapitulated in STN, but also in external globus pallidus and striatum. The onset of consistent phase-locking conditions was preceded by abrupt phase slips between cortical and basal ganglia ensemble signals. Single-unit recordings demonstrated that ensemble-level properties of synchronization were not underlain by changes in firing rate but, rather, by the timing of action potentials in relation to cortical oscillation phase. Notably, the preferred angle of phase-locked action potential firing in each basal ganglia structure was shifted during burst initiation, then maintained stable phase relations during the burst. Subthalamic, pallidal, and striatal neurons engaged and disengaged with cortical β bursts to different extents and timings. The temporal evolution of cortical and basal ganglia synchronization is cell type-selective, which could be key for the generation/maintenance of excessive beta oscillations in parkinsonism.
doi_str_mv 10.1073/pnas.1819975116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6690030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26848469</jstor_id><sourcerecordid>26848469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-2c8cdecb4b0f41867aabfd2248ce3f563330141047dc367f0befcc219a2d1c663</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqFw5gSyxAUO244_4rUvlaoKKFIkLkXiZnm93sTpxl5sbxD_PY5SAvRky_N7b2b8EHpN4IJAyy6nYPIFkUSpdkmIeIIWBBRpBFfwFC0AaNtITvkZepHzFgDUUsJzdMYI41WvFuj7ndtNMZkRu30c5-JjwHHAnSsGd3PKJWMfcNk4PJl070OOwZuAbUzF26oyocedyfW2NmE9eoODKz9jun-Jng1mzO7Vw3mOvn36eHdz26y-fv5yc71qLG_b0lArbe9sxzsYOJGiNaYbekq5tI4NS8EYA1Jn5W1vmWgH6NxgLSXK0J5YIdg5ujr6TnO3c711odRt9JT8zqRfOhqv_68Ev9HruNdCKAAG1eDD0WDzSHZ7vdKHN6BMKSnlnlT2_UOzFH_MLhe989m6cTTBxTlrSgWvs5PlwfbdI3Qb5xTqV1SqpZRQyVWlLo-UTTHn5IbTBAT0IWF9SFj_Tbgq3v6774n_E2kF3hyBbS4xnepUSC65UOw3pDasbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272212849</pqid></control><display><type>article</type><title>Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia network</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cagnan, Hayriye ; Mallet, Nicolas ; Moll, Christian K. E. ; Gulberti, Alessandro ; Holt, Abbey B. ; Westphal, Manfred ; Gerloff, Christian ; Engel, Andreas K. ; Hamel, Wolfgang ; Magill, Peter J. ; Brown, Peter ; Sharott, Andrew</creator><creatorcontrib>Cagnan, Hayriye ; Mallet, Nicolas ; Moll, Christian K. E. ; Gulberti, Alessandro ; Holt, Abbey B. ; Westphal, Manfred ; Gerloff, Christian ; Engel, Andreas K. ; Hamel, Wolfgang ; Magill, Peter J. ; Brown, Peter ; Sharott, Andrew</creatorcontrib><description>Beta frequency oscillations (15 to 35 Hz) in cortical and basal ganglia circuits become abnormally synchronized in Parkinson’s disease (PD). How excessive beta oscillations emerge in these circuits is unclear. We addressed this issue by defining the firing properties of basal ganglia neurons around the emergence of cortical beta bursts (β bursts), transient (50 to 350 ms) increases in the beta amplitude of cortical signals. In PD patients, the phase locking of background spiking activity in the subthalamic nucleus (STN) to frontal electroencephalograms preceded the onset and followed the temporal profile of cortical β bursts, with conditions of synchronization consistent within and across bursts. Neuronal ensemble recordings in multiple basal ganglia structures of parkinsonian rats revealed that these dynamics were recapitulated in STN, but also in external globus pallidus and striatum. The onset of consistent phase-locking conditions was preceded by abrupt phase slips between cortical and basal ganglia ensemble signals. Single-unit recordings demonstrated that ensemble-level properties of synchronization were not underlain by changes in firing rate but, rather, by the timing of action potentials in relation to cortical oscillation phase. Notably, the preferred angle of phase-locked action potential firing in each basal ganglia structure was shifted during burst initiation, then maintained stable phase relations during the burst. Subthalamic, pallidal, and striatal neurons engaged and disengaged with cortical β bursts to different extents and timings. The temporal evolution of cortical and basal ganglia synchronization is cell type-selective, which could be key for the generation/maintenance of excessive beta oscillations in parkinsonism.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1819975116</identifier><identifier>PMID: 31341079</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action potential ; Action Potentials ; Aged ; Animals ; Basal ganglia ; Basal Ganglia - physiopathology ; Beta Rhythm - physiology ; Biological Sciences ; Bursts ; Central nervous system diseases ; Cerebral Cortex - physiopathology ; Circuits ; Cortex ; EEG ; Electrical stimuli ; Electroencephalography ; Evolution ; Female ; Firing pattern ; Firing rate ; Frequency dependence ; Ganglia ; Globus pallidus ; Humans ; Life Sciences ; Locking ; Male ; Movement disorders ; Neostriatum ; Neurobiology ; Neurodegenerative diseases ; Neurons ; Neurons - physiology ; Neurons and Cognition ; Oscillations ; Parkinson Disease - physiopathology ; Parkinson's disease ; PNAS Plus ; Rats ; Solitary tract nucleus ; Subthalamic nucleus ; Synchronism ; Synchronization ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (32), p.16095-16104</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Aug 6, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-2c8cdecb4b0f41867aabfd2248ce3f563330141047dc367f0befcc219a2d1c663</citedby><cites>FETCH-LOGICAL-c477t-2c8cdecb4b0f41867aabfd2248ce3f563330141047dc367f0befcc219a2d1c663</cites><orcidid>0000-0002-6484-8882 ; 0000-0002-1594-3349 ; 0000-0002-1641-115X ; 0000-0002-1152-1114 ; 0000-0003-2904-4384 ; 0000-0003-0557-3935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26848469$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26848469$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31341079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02399888$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cagnan, Hayriye</creatorcontrib><creatorcontrib>Mallet, Nicolas</creatorcontrib><creatorcontrib>Moll, Christian K. E.</creatorcontrib><creatorcontrib>Gulberti, Alessandro</creatorcontrib><creatorcontrib>Holt, Abbey B.</creatorcontrib><creatorcontrib>Westphal, Manfred</creatorcontrib><creatorcontrib>Gerloff, Christian</creatorcontrib><creatorcontrib>Engel, Andreas K.</creatorcontrib><creatorcontrib>Hamel, Wolfgang</creatorcontrib><creatorcontrib>Magill, Peter J.</creatorcontrib><creatorcontrib>Brown, Peter</creatorcontrib><creatorcontrib>Sharott, Andrew</creatorcontrib><title>Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia network</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Beta frequency oscillations (15 to 35 Hz) in cortical and basal ganglia circuits become abnormally synchronized in Parkinson’s disease (PD). How excessive beta oscillations emerge in these circuits is unclear. We addressed this issue by defining the firing properties of basal ganglia neurons around the emergence of cortical beta bursts (β bursts), transient (50 to 350 ms) increases in the beta amplitude of cortical signals. In PD patients, the phase locking of background spiking activity in the subthalamic nucleus (STN) to frontal electroencephalograms preceded the onset and followed the temporal profile of cortical β bursts, with conditions of synchronization consistent within and across bursts. Neuronal ensemble recordings in multiple basal ganglia structures of parkinsonian rats revealed that these dynamics were recapitulated in STN, but also in external globus pallidus and striatum. The onset of consistent phase-locking conditions was preceded by abrupt phase slips between cortical and basal ganglia ensemble signals. Single-unit recordings demonstrated that ensemble-level properties of synchronization were not underlain by changes in firing rate but, rather, by the timing of action potentials in relation to cortical oscillation phase. Notably, the preferred angle of phase-locked action potential firing in each basal ganglia structure was shifted during burst initiation, then maintained stable phase relations during the burst. Subthalamic, pallidal, and striatal neurons engaged and disengaged with cortical β bursts to different extents and timings. The temporal evolution of cortical and basal ganglia synchronization is cell type-selective, which could be key for the generation/maintenance of excessive beta oscillations in parkinsonism.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Aged</subject><subject>Animals</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - physiopathology</subject><subject>Beta Rhythm - physiology</subject><subject>Biological Sciences</subject><subject>Bursts</subject><subject>Central nervous system diseases</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Circuits</subject><subject>Cortex</subject><subject>EEG</subject><subject>Electrical stimuli</subject><subject>Electroencephalography</subject><subject>Evolution</subject><subject>Female</subject><subject>Firing pattern</subject><subject>Firing rate</subject><subject>Frequency dependence</subject><subject>Ganglia</subject><subject>Globus pallidus</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Locking</subject><subject>Male</subject><subject>Movement disorders</subject><subject>Neostriatum</subject><subject>Neurobiology</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Oscillations</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>PNAS Plus</subject><subject>Rats</subject><subject>Solitary tract nucleus</subject><subject>Subthalamic nucleus</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EoqFw5gSyxAUO244_4rUvlaoKKFIkLkXiZnm93sTpxl5sbxD_PY5SAvRky_N7b2b8EHpN4IJAyy6nYPIFkUSpdkmIeIIWBBRpBFfwFC0AaNtITvkZepHzFgDUUsJzdMYI41WvFuj7ndtNMZkRu30c5-JjwHHAnSsGd3PKJWMfcNk4PJl070OOwZuAbUzF26oyocedyfW2NmE9eoODKz9jun-Jng1mzO7Vw3mOvn36eHdz26y-fv5yc71qLG_b0lArbe9sxzsYOJGiNaYbekq5tI4NS8EYA1Jn5W1vmWgH6NxgLSXK0J5YIdg5ujr6TnO3c711odRt9JT8zqRfOhqv_68Ev9HruNdCKAAG1eDD0WDzSHZ7vdKHN6BMKSnlnlT2_UOzFH_MLhe989m6cTTBxTlrSgWvs5PlwfbdI3Qb5xTqV1SqpZRQyVWlLo-UTTHn5IbTBAT0IWF9SFj_Tbgq3v6774n_E2kF3hyBbS4xnepUSC65UOw3pDasbQ</recordid><startdate>20190806</startdate><enddate>20190806</enddate><creator>Cagnan, Hayriye</creator><creator>Mallet, Nicolas</creator><creator>Moll, Christian K. E.</creator><creator>Gulberti, Alessandro</creator><creator>Holt, Abbey B.</creator><creator>Westphal, Manfred</creator><creator>Gerloff, Christian</creator><creator>Engel, Andreas K.</creator><creator>Hamel, Wolfgang</creator><creator>Magill, Peter J.</creator><creator>Brown, Peter</creator><creator>Sharott, Andrew</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6484-8882</orcidid><orcidid>https://orcid.org/0000-0002-1594-3349</orcidid><orcidid>https://orcid.org/0000-0002-1641-115X</orcidid><orcidid>https://orcid.org/0000-0002-1152-1114</orcidid><orcidid>https://orcid.org/0000-0003-2904-4384</orcidid><orcidid>https://orcid.org/0000-0003-0557-3935</orcidid></search><sort><creationdate>20190806</creationdate><title>Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia network</title><author>Cagnan, Hayriye ; Mallet, Nicolas ; Moll, Christian K. E. ; Gulberti, Alessandro ; Holt, Abbey B. ; Westphal, Manfred ; Gerloff, Christian ; Engel, Andreas K. ; Hamel, Wolfgang ; Magill, Peter J. ; Brown, Peter ; Sharott, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-2c8cdecb4b0f41867aabfd2248ce3f563330141047dc367f0befcc219a2d1c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Aged</topic><topic>Animals</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - physiopathology</topic><topic>Beta Rhythm - physiology</topic><topic>Biological Sciences</topic><topic>Bursts</topic><topic>Central nervous system diseases</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Circuits</topic><topic>Cortex</topic><topic>EEG</topic><topic>Electrical stimuli</topic><topic>Electroencephalography</topic><topic>Evolution</topic><topic>Female</topic><topic>Firing pattern</topic><topic>Firing rate</topic><topic>Frequency dependence</topic><topic>Ganglia</topic><topic>Globus pallidus</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Locking</topic><topic>Male</topic><topic>Movement disorders</topic><topic>Neostriatum</topic><topic>Neurobiology</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Oscillations</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>PNAS Plus</topic><topic>Rats</topic><topic>Solitary tract nucleus</topic><topic>Subthalamic nucleus</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cagnan, Hayriye</creatorcontrib><creatorcontrib>Mallet, Nicolas</creatorcontrib><creatorcontrib>Moll, Christian K. E.</creatorcontrib><creatorcontrib>Gulberti, Alessandro</creatorcontrib><creatorcontrib>Holt, Abbey B.</creatorcontrib><creatorcontrib>Westphal, Manfred</creatorcontrib><creatorcontrib>Gerloff, Christian</creatorcontrib><creatorcontrib>Engel, Andreas K.</creatorcontrib><creatorcontrib>Hamel, Wolfgang</creatorcontrib><creatorcontrib>Magill, Peter J.</creatorcontrib><creatorcontrib>Brown, Peter</creatorcontrib><creatorcontrib>Sharott, Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cagnan, Hayriye</au><au>Mallet, Nicolas</au><au>Moll, Christian K. E.</au><au>Gulberti, Alessandro</au><au>Holt, Abbey B.</au><au>Westphal, Manfred</au><au>Gerloff, Christian</au><au>Engel, Andreas K.</au><au>Hamel, Wolfgang</au><au>Magill, Peter J.</au><au>Brown, Peter</au><au>Sharott, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia network</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-08-06</date><risdate>2019</risdate><volume>116</volume><issue>32</issue><spage>16095</spage><epage>16104</epage><pages>16095-16104</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Beta frequency oscillations (15 to 35 Hz) in cortical and basal ganglia circuits become abnormally synchronized in Parkinson’s disease (PD). How excessive beta oscillations emerge in these circuits is unclear. We addressed this issue by defining the firing properties of basal ganglia neurons around the emergence of cortical beta bursts (β bursts), transient (50 to 350 ms) increases in the beta amplitude of cortical signals. In PD patients, the phase locking of background spiking activity in the subthalamic nucleus (STN) to frontal electroencephalograms preceded the onset and followed the temporal profile of cortical β bursts, with conditions of synchronization consistent within and across bursts. Neuronal ensemble recordings in multiple basal ganglia structures of parkinsonian rats revealed that these dynamics were recapitulated in STN, but also in external globus pallidus and striatum. The onset of consistent phase-locking conditions was preceded by abrupt phase slips between cortical and basal ganglia ensemble signals. Single-unit recordings demonstrated that ensemble-level properties of synchronization were not underlain by changes in firing rate but, rather, by the timing of action potentials in relation to cortical oscillation phase. Notably, the preferred angle of phase-locked action potential firing in each basal ganglia structure was shifted during burst initiation, then maintained stable phase relations during the burst. Subthalamic, pallidal, and striatal neurons engaged and disengaged with cortical β bursts to different extents and timings. The temporal evolution of cortical and basal ganglia synchronization is cell type-selective, which could be key for the generation/maintenance of excessive beta oscillations in parkinsonism.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31341079</pmid><doi>10.1073/pnas.1819975116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6484-8882</orcidid><orcidid>https://orcid.org/0000-0002-1594-3349</orcidid><orcidid>https://orcid.org/0000-0002-1641-115X</orcidid><orcidid>https://orcid.org/0000-0002-1152-1114</orcidid><orcidid>https://orcid.org/0000-0003-2904-4384</orcidid><orcidid>https://orcid.org/0000-0003-0557-3935</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (32), p.16095-16104
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6690030
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Action potential
Action Potentials
Aged
Animals
Basal ganglia
Basal Ganglia - physiopathology
Beta Rhythm - physiology
Biological Sciences
Bursts
Central nervous system diseases
Cerebral Cortex - physiopathology
Circuits
Cortex
EEG
Electrical stimuli
Electroencephalography
Evolution
Female
Firing pattern
Firing rate
Frequency dependence
Ganglia
Globus pallidus
Humans
Life Sciences
Locking
Male
Movement disorders
Neostriatum
Neurobiology
Neurodegenerative diseases
Neurons
Neurons - physiology
Neurons and Cognition
Oscillations
Parkinson Disease - physiopathology
Parkinson's disease
PNAS Plus
Rats
Solitary tract nucleus
Subthalamic nucleus
Synchronism
Synchronization
Time Factors
title Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20evolution%20of%20beta%20bursts%20in%20the%20parkinsonian%20cortical%20and%20basal%20ganglia%20network&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cagnan,%20Hayriye&rft.date=2019-08-06&rft.volume=116&rft.issue=32&rft.spage=16095&rft.epage=16104&rft.pages=16095-16104&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1819975116&rft_dat=%3Cjstor_pubme%3E26848469%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272212849&rft_id=info:pmid/31341079&rft_jstor_id=26848469&rfr_iscdi=true