Exposing the inadequacy of redox formalisms by resolving redox inequivalence within isovalent clusters
In this report we examine a family of trinuclear iron complexes by multiple-wavelength, anomalous diffraction (MAD) to explore the redox load distribution within cluster materials by the free refinement of atomic scattering factors. Several effects were explored that can impact atomic scattering fac...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-08, Vol.116 (32), p.15836-15841 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15841 |
---|---|
container_issue | 32 |
container_start_page | 15836 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Bartholomew, Amymarie K. Teesdale, Justin J. Sánchez, Raúl Hernández Malbrecht, Brian J. Juda, Cristin E. Ménard, Gabriel Bu, Wei Iovan, Diana A. Mikhailine, Alexandre A. Zheng, Shao-Liang Sarangi, Ritimukta Wang, SuYin Grass Chen, Yu-Sheng Betley, Theodore A. |
description | In this report we examine a family of trinuclear iron complexes by multiple-wavelength, anomalous diffraction (MAD) to explore the redox load distribution within cluster materials by the free refinement of atomic scattering factors. Several effects were explored that can impact atomic scattering factors within clusters, including 1) metal atom primary coordination sphere, 2) M–M bonding, and 3) redox delocalization in formally mixed-valent species. Complexes were investigated which vary from highly symmetric to fully asymmetric by 57Fe Mössbauer and X-ray diffraction to explore the relationship between MAD-derived data and the data available from these widely used characterization techniques. The compounds examined include the all-ferrous clusters [ⁿBu₄N][(tbsL)Fe₃(μ³–Cl)] (1) ([tbsL]6− = [1,3,5-C₆H₉(NC₆H₄-o-NSi
t
BuMe₂)₃]6−]), (tbsL)Fe₃(py) (2), [K(C222)]₂[(tbsL)Fe₃(μ³–NPh)] (4) (C222 = 2,2,2-cryptand), and the mixed-valent (tbsL)Fe₃(μ³–NPh) (3). Redox delocalization in mixed-valent 3 was explored with cyclic voltammetry (CV), zero-field 57Fe Mössbauer, near-infrared (NIR) spectroscopy, and X-ray crystallography techniques. We find that the MAD results show an excellent correspondence to 57Fe Mössbauer data; yet also can distinguish between subtle changes in local coordination geometries where Mössbauer cannot. Differences within aggregate oxidation levels are evident by systematic shifts of scattering factor envelopes to increasingly higher energies. However, distinguishing local oxidation levels in iso- or mixed-valent materials can be dramatically obscured by the degree of covalent intracore bonding. MAD-derived atomic scattering factor data emphasize in-edge features that are often difficult to analyze by X-ray absorption near edge spectroscopy (XANES). Thus, relative oxidation levels within the cluster were most reliably ascertained from comparing the entire envelope of the atomic scattering factor data. |
doi_str_mv | 10.1073/pnas.1907699116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6690028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26848433</jstor_id><sourcerecordid>26848433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-5cca8374762bb7050bf66945a87a6f000387db07791ae1b9706156ebbf96277a3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERZeFMydQRC9c0vordnxBQlWBSpW4wNlyvE7Xq8Teepyl-9_X25SFcrI08_ObN_MQekfwOcGSXWyDgXOisBRKESJeoAXBitSCK_wSLTCmsm455afoNcAGY6yaFr9Cp4wwyiWnC9Rf3W8j-HBb5bWrfDArdzcZu69iXyW3ivdVH9NoBg8jVN2-1CAOuwM_d30ovN-ZwQXrqt8-r32oPMTHSq7sMEF2Cd6gk94M4N4-vUv06-vVz8vv9c2Pb9eXX25qyyXOdWOtaZnkUtCuk7jBXS-E4o1ppRF98c9aueqwlIoYRzolsSCNcF3XK0GlNGyJPs-626kb3coWD8kMepv8aNJeR-P1807wa30bd7qMKddqi8DHWSBC9hqsz86ubQzB2axJwxljqkCfnqakeDc5yHr0YN0wmODiBJpSQZRolOAFPfsP3cQphXKDQklKCZMlxyW6mCmbIkBy_dExwfoQtD4Erf8GXX58-HfRI_8n2QK8n4EN5JiOfSpa3h62eAA9oq-R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272213707</pqid></control><display><type>article</type><title>Exposing the inadequacy of redox formalisms by resolving redox inequivalence within isovalent clusters</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bartholomew, Amymarie K. ; Teesdale, Justin J. ; Sánchez, Raúl Hernández ; Malbrecht, Brian J. ; Juda, Cristin E. ; Ménard, Gabriel ; Bu, Wei ; Iovan, Diana A. ; Mikhailine, Alexandre A. ; Zheng, Shao-Liang ; Sarangi, Ritimukta ; Wang, SuYin Grass ; Chen, Yu-Sheng ; Betley, Theodore A.</creator><creatorcontrib>Bartholomew, Amymarie K. ; Teesdale, Justin J. ; Sánchez, Raúl Hernández ; Malbrecht, Brian J. ; Juda, Cristin E. ; Ménard, Gabriel ; Bu, Wei ; Iovan, Diana A. ; Mikhailine, Alexandre A. ; Zheng, Shao-Liang ; Sarangi, Ritimukta ; Wang, SuYin Grass ; Chen, Yu-Sheng ; Betley, Theodore A.</creatorcontrib><description>In this report we examine a family of trinuclear iron complexes by multiple-wavelength, anomalous diffraction (MAD) to explore the redox load distribution within cluster materials by the free refinement of atomic scattering factors. Several effects were explored that can impact atomic scattering factors within clusters, including 1) metal atom primary coordination sphere, 2) M–M bonding, and 3) redox delocalization in formally mixed-valent species. Complexes were investigated which vary from highly symmetric to fully asymmetric by 57Fe Mössbauer and X-ray diffraction to explore the relationship between MAD-derived data and the data available from these widely used characterization techniques. The compounds examined include the all-ferrous clusters [ⁿBu₄N][(tbsL)Fe₃(μ³–Cl)] (1) ([tbsL]6− = [1,3,5-C₆H₉(NC₆H₄-o-NSi
t
BuMe₂)₃]6−]), (tbsL)Fe₃(py) (2), [K(C222)]₂[(tbsL)Fe₃(μ³–NPh)] (4) (C222 = 2,2,2-cryptand), and the mixed-valent (tbsL)Fe₃(μ³–NPh) (3). Redox delocalization in mixed-valent 3 was explored with cyclic voltammetry (CV), zero-field 57Fe Mössbauer, near-infrared (NIR) spectroscopy, and X-ray crystallography techniques. We find that the MAD results show an excellent correspondence to 57Fe Mössbauer data; yet also can distinguish between subtle changes in local coordination geometries where Mössbauer cannot. Differences within aggregate oxidation levels are evident by systematic shifts of scattering factor envelopes to increasingly higher energies. However, distinguishing local oxidation levels in iso- or mixed-valent materials can be dramatically obscured by the degree of covalent intracore bonding. MAD-derived atomic scattering factor data emphasize in-edge features that are often difficult to analyze by X-ray absorption near edge spectroscopy (XANES). Thus, relative oxidation levels within the cluster were most reliably ascertained from comparing the entire envelope of the atomic scattering factor data.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1907699116</identifier><identifier>PMID: 31324742</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bonding ; Chemical bonds ; Clusters ; Coordination compounds ; Crystallography ; Crystallography, X-Ray ; Iron 57 ; Load distribution ; Load distribution (forces) ; Models, Molecular ; Near infrared radiation ; Oxidation ; Oxidation-Reduction ; Physical Sciences ; Scattering ; Spectroscopy ; Spectroscopy, Mossbauer ; Spectrum analysis ; Stress concentration ; X ray absorption ; X-ray crystallography ; X-Ray Diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (32), p.15836-15841</ispartof><rights>Copyright National Academy of Sciences Aug 6, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-5cca8374762bb7050bf66945a87a6f000387db07791ae1b9706156ebbf96277a3</citedby><cites>FETCH-LOGICAL-c470t-5cca8374762bb7050bf66945a87a6f000387db07791ae1b9706156ebbf96277a3</cites><orcidid>0000-0001-6013-2708 ; 0000-0002-9996-3733 ; 0000000160132708 ; 0000000299963733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26848433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26848433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31324742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1543339$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartholomew, Amymarie K.</creatorcontrib><creatorcontrib>Teesdale, Justin J.</creatorcontrib><creatorcontrib>Sánchez, Raúl Hernández</creatorcontrib><creatorcontrib>Malbrecht, Brian J.</creatorcontrib><creatorcontrib>Juda, Cristin E.</creatorcontrib><creatorcontrib>Ménard, Gabriel</creatorcontrib><creatorcontrib>Bu, Wei</creatorcontrib><creatorcontrib>Iovan, Diana A.</creatorcontrib><creatorcontrib>Mikhailine, Alexandre A.</creatorcontrib><creatorcontrib>Zheng, Shao-Liang</creatorcontrib><creatorcontrib>Sarangi, Ritimukta</creatorcontrib><creatorcontrib>Wang, SuYin Grass</creatorcontrib><creatorcontrib>Chen, Yu-Sheng</creatorcontrib><creatorcontrib>Betley, Theodore A.</creatorcontrib><title>Exposing the inadequacy of redox formalisms by resolving redox inequivalence within isovalent clusters</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In this report we examine a family of trinuclear iron complexes by multiple-wavelength, anomalous diffraction (MAD) to explore the redox load distribution within cluster materials by the free refinement of atomic scattering factors. Several effects were explored that can impact atomic scattering factors within clusters, including 1) metal atom primary coordination sphere, 2) M–M bonding, and 3) redox delocalization in formally mixed-valent species. Complexes were investigated which vary from highly symmetric to fully asymmetric by 57Fe Mössbauer and X-ray diffraction to explore the relationship between MAD-derived data and the data available from these widely used characterization techniques. The compounds examined include the all-ferrous clusters [ⁿBu₄N][(tbsL)Fe₃(μ³–Cl)] (1) ([tbsL]6− = [1,3,5-C₆H₉(NC₆H₄-o-NSi
t
BuMe₂)₃]6−]), (tbsL)Fe₃(py) (2), [K(C222)]₂[(tbsL)Fe₃(μ³–NPh)] (4) (C222 = 2,2,2-cryptand), and the mixed-valent (tbsL)Fe₃(μ³–NPh) (3). Redox delocalization in mixed-valent 3 was explored with cyclic voltammetry (CV), zero-field 57Fe Mössbauer, near-infrared (NIR) spectroscopy, and X-ray crystallography techniques. We find that the MAD results show an excellent correspondence to 57Fe Mössbauer data; yet also can distinguish between subtle changes in local coordination geometries where Mössbauer cannot. Differences within aggregate oxidation levels are evident by systematic shifts of scattering factor envelopes to increasingly higher energies. However, distinguishing local oxidation levels in iso- or mixed-valent materials can be dramatically obscured by the degree of covalent intracore bonding. MAD-derived atomic scattering factor data emphasize in-edge features that are often difficult to analyze by X-ray absorption near edge spectroscopy (XANES). Thus, relative oxidation levels within the cluster were most reliably ascertained from comparing the entire envelope of the atomic scattering factor data.</description><subject>Bonding</subject><subject>Chemical bonds</subject><subject>Clusters</subject><subject>Coordination compounds</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Iron 57</subject><subject>Load distribution</subject><subject>Load distribution (forces)</subject><subject>Models, Molecular</subject><subject>Near infrared radiation</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Physical Sciences</subject><subject>Scattering</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Mossbauer</subject><subject>Spectrum analysis</subject><subject>Stress concentration</subject><subject>X ray absorption</subject><subject>X-ray crystallography</subject><subject>X-Ray Diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS1ERZeFMydQRC9c0vordnxBQlWBSpW4wNlyvE7Xq8Teepyl-9_X25SFcrI08_ObN_MQekfwOcGSXWyDgXOisBRKESJeoAXBitSCK_wSLTCmsm455afoNcAGY6yaFr9Cp4wwyiWnC9Rf3W8j-HBb5bWrfDArdzcZu69iXyW3ivdVH9NoBg8jVN2-1CAOuwM_d30ovN-ZwQXrqt8-r32oPMTHSq7sMEF2Cd6gk94M4N4-vUv06-vVz8vv9c2Pb9eXX25qyyXOdWOtaZnkUtCuk7jBXS-E4o1ppRF98c9aueqwlIoYRzolsSCNcF3XK0GlNGyJPs-626kb3coWD8kMepv8aNJeR-P1807wa30bd7qMKddqi8DHWSBC9hqsz86ubQzB2axJwxljqkCfnqakeDc5yHr0YN0wmODiBJpSQZRolOAFPfsP3cQphXKDQklKCZMlxyW6mCmbIkBy_dExwfoQtD4Erf8GXX58-HfRI_8n2QK8n4EN5JiOfSpa3h62eAA9oq-R</recordid><startdate>20190806</startdate><enddate>20190806</enddate><creator>Bartholomew, Amymarie K.</creator><creator>Teesdale, Justin J.</creator><creator>Sánchez, Raúl Hernández</creator><creator>Malbrecht, Brian J.</creator><creator>Juda, Cristin E.</creator><creator>Ménard, Gabriel</creator><creator>Bu, Wei</creator><creator>Iovan, Diana A.</creator><creator>Mikhailine, Alexandre A.</creator><creator>Zheng, Shao-Liang</creator><creator>Sarangi, Ritimukta</creator><creator>Wang, SuYin Grass</creator><creator>Chen, Yu-Sheng</creator><creator>Betley, Theodore A.</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6013-2708</orcidid><orcidid>https://orcid.org/0000-0002-9996-3733</orcidid><orcidid>https://orcid.org/0000000160132708</orcidid><orcidid>https://orcid.org/0000000299963733</orcidid></search><sort><creationdate>20190806</creationdate><title>Exposing the inadequacy of redox formalisms by resolving redox inequivalence within isovalent clusters</title><author>Bartholomew, Amymarie K. ; Teesdale, Justin J. ; Sánchez, Raúl Hernández ; Malbrecht, Brian J. ; Juda, Cristin E. ; Ménard, Gabriel ; Bu, Wei ; Iovan, Diana A. ; Mikhailine, Alexandre A. ; Zheng, Shao-Liang ; Sarangi, Ritimukta ; Wang, SuYin Grass ; Chen, Yu-Sheng ; Betley, Theodore A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-5cca8374762bb7050bf66945a87a6f000387db07791ae1b9706156ebbf96277a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bonding</topic><topic>Chemical bonds</topic><topic>Clusters</topic><topic>Coordination compounds</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Iron 57</topic><topic>Load distribution</topic><topic>Load distribution (forces)</topic><topic>Models, Molecular</topic><topic>Near infrared radiation</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Physical Sciences</topic><topic>Scattering</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Mossbauer</topic><topic>Spectrum analysis</topic><topic>Stress concentration</topic><topic>X ray absorption</topic><topic>X-ray crystallography</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartholomew, Amymarie K.</creatorcontrib><creatorcontrib>Teesdale, Justin J.</creatorcontrib><creatorcontrib>Sánchez, Raúl Hernández</creatorcontrib><creatorcontrib>Malbrecht, Brian J.</creatorcontrib><creatorcontrib>Juda, Cristin E.</creatorcontrib><creatorcontrib>Ménard, Gabriel</creatorcontrib><creatorcontrib>Bu, Wei</creatorcontrib><creatorcontrib>Iovan, Diana A.</creatorcontrib><creatorcontrib>Mikhailine, Alexandre A.</creatorcontrib><creatorcontrib>Zheng, Shao-Liang</creatorcontrib><creatorcontrib>Sarangi, Ritimukta</creatorcontrib><creatorcontrib>Wang, SuYin Grass</creatorcontrib><creatorcontrib>Chen, Yu-Sheng</creatorcontrib><creatorcontrib>Betley, Theodore A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartholomew, Amymarie K.</au><au>Teesdale, Justin J.</au><au>Sánchez, Raúl Hernández</au><au>Malbrecht, Brian J.</au><au>Juda, Cristin E.</au><au>Ménard, Gabriel</au><au>Bu, Wei</au><au>Iovan, Diana A.</au><au>Mikhailine, Alexandre A.</au><au>Zheng, Shao-Liang</au><au>Sarangi, Ritimukta</au><au>Wang, SuYin Grass</au><au>Chen, Yu-Sheng</au><au>Betley, Theodore A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exposing the inadequacy of redox formalisms by resolving redox inequivalence within isovalent clusters</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-08-06</date><risdate>2019</risdate><volume>116</volume><issue>32</issue><spage>15836</spage><epage>15841</epage><pages>15836-15841</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In this report we examine a family of trinuclear iron complexes by multiple-wavelength, anomalous diffraction (MAD) to explore the redox load distribution within cluster materials by the free refinement of atomic scattering factors. Several effects were explored that can impact atomic scattering factors within clusters, including 1) metal atom primary coordination sphere, 2) M–M bonding, and 3) redox delocalization in formally mixed-valent species. Complexes were investigated which vary from highly symmetric to fully asymmetric by 57Fe Mössbauer and X-ray diffraction to explore the relationship between MAD-derived data and the data available from these widely used characterization techniques. The compounds examined include the all-ferrous clusters [ⁿBu₄N][(tbsL)Fe₃(μ³–Cl)] (1) ([tbsL]6− = [1,3,5-C₆H₉(NC₆H₄-o-NSi
t
BuMe₂)₃]6−]), (tbsL)Fe₃(py) (2), [K(C222)]₂[(tbsL)Fe₃(μ³–NPh)] (4) (C222 = 2,2,2-cryptand), and the mixed-valent (tbsL)Fe₃(μ³–NPh) (3). Redox delocalization in mixed-valent 3 was explored with cyclic voltammetry (CV), zero-field 57Fe Mössbauer, near-infrared (NIR) spectroscopy, and X-ray crystallography techniques. We find that the MAD results show an excellent correspondence to 57Fe Mössbauer data; yet also can distinguish between subtle changes in local coordination geometries where Mössbauer cannot. Differences within aggregate oxidation levels are evident by systematic shifts of scattering factor envelopes to increasingly higher energies. However, distinguishing local oxidation levels in iso- or mixed-valent materials can be dramatically obscured by the degree of covalent intracore bonding. MAD-derived atomic scattering factor data emphasize in-edge features that are often difficult to analyze by X-ray absorption near edge spectroscopy (XANES). Thus, relative oxidation levels within the cluster were most reliably ascertained from comparing the entire envelope of the atomic scattering factor data.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31324742</pmid><doi>10.1073/pnas.1907699116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6013-2708</orcidid><orcidid>https://orcid.org/0000-0002-9996-3733</orcidid><orcidid>https://orcid.org/0000000160132708</orcidid><orcidid>https://orcid.org/0000000299963733</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (32), p.15836-15841 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6690028 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bonding Chemical bonds Clusters Coordination compounds Crystallography Crystallography, X-Ray Iron 57 Load distribution Load distribution (forces) Models, Molecular Near infrared radiation Oxidation Oxidation-Reduction Physical Sciences Scattering Spectroscopy Spectroscopy, Mossbauer Spectrum analysis Stress concentration X ray absorption X-ray crystallography X-Ray Diffraction |
title | Exposing the inadequacy of redox formalisms by resolving redox inequivalence within isovalent clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exposing%20the%20inadequacy%20of%20redox%20formalisms%20by%20resolving%20redox%20inequivalence%20within%20isovalent%20clusters&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bartholomew,%20Amymarie%20K.&rft.date=2019-08-06&rft.volume=116&rft.issue=32&rft.spage=15836&rft.epage=15841&rft.pages=15836-15841&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1907699116&rft_dat=%3Cjstor_pubme%3E26848433%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272213707&rft_id=info:pmid/31324742&rft_jstor_id=26848433&rfr_iscdi=true |