Audiovisual detection at different intensities and delays
In the redundant signals task, two target stimuli are associated with the same response. If both targets are presented together, redundancy gains are observed, as compared with single-target presentation. Different models explain these redundancy gains, including race and coactivation models (e.g.,...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical psychology 2019-08, Vol.91, p.159-175 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | |
container_start_page | 159 |
container_title | Journal of mathematical psychology |
container_volume | 91 |
creator | Chandrasekaran, Chandramouli Blurton, Steven P. Gondan, Matthias |
description | In the redundant signals task, two target stimuli are associated with the same response. If both targets are presented together, redundancy gains are observed, as compared with single-target presentation. Different models explain these redundancy gains, including race and coactivation models (e.g., the Wiener diffusion superposition model, Schwarz, 1994, Journal of Mathematical Psychology, and the Ornstein–Uhlenbeck diffusion superposition model, Diederich, 1995, Journal of Mathematical Psychology). In the present study, two monkeys performed a simple detection task with auditory, visual and audiovisual stimuli of different intensities and onset asynchronies. In its basic form, a Wiener diffusion superposition model provided only a poor description of the observed data, especially of the detection rate (i.e., accuracy or hit rate) for low stimulus intensity. We expanded the model in two ways, by (A) adding a temporal deadline, that is, restricting the evidence accumulation process to a stopping time, and (B) adding a second “nogo” barrier representing target absence. We present closed-form solutions for the mean absorption times and absorption probabilities for a Wiener diffusion process with a drift towards a single barrier in the presence of a temporal deadline (A), and numerically improved solutions for the two-barrier model (B). The best description of the data was obtained from the deadline model and substantially outperformed the two-barrier approach.
•We extend the one-barrier Wiener diffusion superposition model by a deadline.•Closed-form solutions for detection rate and mean response time for asynchronous stimuli.•Improved implementations for two-stage two-barrier Wiener diffusion process. |
doi_str_mv | 10.1016/j.jmp.2019.05.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6688765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022249617301815</els_id><sourcerecordid>2272734608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-6e0e0141fab9483c4a3fc10779783b1565108ce737a7d0ca50df4b4d0b6ef7173</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRtFZ_gBfJ0UvibLIfCYIgxS8oeNHzstmd6JY0qbtJof_eLdWiF08DM8-8MzyEXFDIKFBxvcgWy1WWA60y4BkAPSATCpVIoSzhkEwA8jzNWSVOyGkIC4DYF_KYnBSUAWOcT0h1N1rXr10YdZtYHNAMru8SPSTWNQ167IbEdQN2wQ0OQ6I7G7FWb8IZOWp0G_D8u07J28P96-wpnb88Ps_u5qlhnA6pQECgjDa6rlhZGKaLxlCQspJlUVMuOIXSoCyklhaM5mAbVjMLtcBGUllMye0udzXWS7QmfuR1q1beLbXfqF479XfSuQ_13q-VEGUpBY8BV98Bvv8cMQxq6YLBttUd9mNQeS5zWTABZUTpDjW-D8Fjsz9DQW2Vq4WKytVWuQKuovK4c_n7v_3Gj-MI3OwAjJbWDr0KxmFn0DofdSvbu3_ivwAZjZJ1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272734608</pqid></control><display><type>article</type><title>Audiovisual detection at different intensities and delays</title><source>Elsevier ScienceDirect Journals</source><creator>Chandrasekaran, Chandramouli ; Blurton, Steven P. ; Gondan, Matthias</creator><creatorcontrib>Chandrasekaran, Chandramouli ; Blurton, Steven P. ; Gondan, Matthias</creatorcontrib><description>In the redundant signals task, two target stimuli are associated with the same response. If both targets are presented together, redundancy gains are observed, as compared with single-target presentation. Different models explain these redundancy gains, including race and coactivation models (e.g., the Wiener diffusion superposition model, Schwarz, 1994, Journal of Mathematical Psychology, and the Ornstein–Uhlenbeck diffusion superposition model, Diederich, 1995, Journal of Mathematical Psychology). In the present study, two monkeys performed a simple detection task with auditory, visual and audiovisual stimuli of different intensities and onset asynchronies. In its basic form, a Wiener diffusion superposition model provided only a poor description of the observed data, especially of the detection rate (i.e., accuracy or hit rate) for low stimulus intensity. We expanded the model in two ways, by (A) adding a temporal deadline, that is, restricting the evidence accumulation process to a stopping time, and (B) adding a second “nogo” barrier representing target absence. We present closed-form solutions for the mean absorption times and absorption probabilities for a Wiener diffusion process with a drift towards a single barrier in the presence of a temporal deadline (A), and numerically improved solutions for the two-barrier model (B). The best description of the data was obtained from the deadline model and substantially outperformed the two-barrier approach.
•We extend the one-barrier Wiener diffusion superposition model by a deadline.•Closed-form solutions for detection rate and mean response time for asynchronous stimuli.•Improved implementations for two-stage two-barrier Wiener diffusion process.</description><identifier>ISSN: 0022-2496</identifier><identifier>EISSN: 1096-0880</identifier><identifier>DOI: 10.1016/j.jmp.2019.05.001</identifier><identifier>PMID: 31404455</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Decision-making ; Monkey ; Multisensory processing ; Reaction times ; Wiener diffusion process</subject><ispartof>Journal of mathematical psychology, 2019-08, Vol.91, p.159-175</ispartof><rights>2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-6e0e0141fab9483c4a3fc10779783b1565108ce737a7d0ca50df4b4d0b6ef7173</citedby><cites>FETCH-LOGICAL-c451t-6e0e0141fab9483c4a3fc10779783b1565108ce737a7d0ca50df4b4d0b6ef7173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022249617301815$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31404455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandrasekaran, Chandramouli</creatorcontrib><creatorcontrib>Blurton, Steven P.</creatorcontrib><creatorcontrib>Gondan, Matthias</creatorcontrib><title>Audiovisual detection at different intensities and delays</title><title>Journal of mathematical psychology</title><addtitle>J Math Psychol</addtitle><description>In the redundant signals task, two target stimuli are associated with the same response. If both targets are presented together, redundancy gains are observed, as compared with single-target presentation. Different models explain these redundancy gains, including race and coactivation models (e.g., the Wiener diffusion superposition model, Schwarz, 1994, Journal of Mathematical Psychology, and the Ornstein–Uhlenbeck diffusion superposition model, Diederich, 1995, Journal of Mathematical Psychology). In the present study, two monkeys performed a simple detection task with auditory, visual and audiovisual stimuli of different intensities and onset asynchronies. In its basic form, a Wiener diffusion superposition model provided only a poor description of the observed data, especially of the detection rate (i.e., accuracy or hit rate) for low stimulus intensity. We expanded the model in two ways, by (A) adding a temporal deadline, that is, restricting the evidence accumulation process to a stopping time, and (B) adding a second “nogo” barrier representing target absence. We present closed-form solutions for the mean absorption times and absorption probabilities for a Wiener diffusion process with a drift towards a single barrier in the presence of a temporal deadline (A), and numerically improved solutions for the two-barrier model (B). The best description of the data was obtained from the deadline model and substantially outperformed the two-barrier approach.
•We extend the one-barrier Wiener diffusion superposition model by a deadline.•Closed-form solutions for detection rate and mean response time for asynchronous stimuli.•Improved implementations for two-stage two-barrier Wiener diffusion process.</description><subject>Decision-making</subject><subject>Monkey</subject><subject>Multisensory processing</subject><subject>Reaction times</subject><subject>Wiener diffusion process</subject><issn>0022-2496</issn><issn>1096-0880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRtFZ_gBfJ0UvibLIfCYIgxS8oeNHzstmd6JY0qbtJof_eLdWiF08DM8-8MzyEXFDIKFBxvcgWy1WWA60y4BkAPSATCpVIoSzhkEwA8jzNWSVOyGkIC4DYF_KYnBSUAWOcT0h1N1rXr10YdZtYHNAMru8SPSTWNQ167IbEdQN2wQ0OQ6I7G7FWb8IZOWp0G_D8u07J28P96-wpnb88Ps_u5qlhnA6pQECgjDa6rlhZGKaLxlCQspJlUVMuOIXSoCyklhaM5mAbVjMLtcBGUllMye0udzXWS7QmfuR1q1beLbXfqF479XfSuQ_13q-VEGUpBY8BV98Bvv8cMQxq6YLBttUd9mNQeS5zWTABZUTpDjW-D8Fjsz9DQW2Vq4WKytVWuQKuovK4c_n7v_3Gj-MI3OwAjJbWDr0KxmFn0DofdSvbu3_ivwAZjZJ1</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Chandrasekaran, Chandramouli</creator><creator>Blurton, Steven P.</creator><creator>Gondan, Matthias</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190801</creationdate><title>Audiovisual detection at different intensities and delays</title><author>Chandrasekaran, Chandramouli ; Blurton, Steven P. ; Gondan, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-6e0e0141fab9483c4a3fc10779783b1565108ce737a7d0ca50df4b4d0b6ef7173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Decision-making</topic><topic>Monkey</topic><topic>Multisensory processing</topic><topic>Reaction times</topic><topic>Wiener diffusion process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekaran, Chandramouli</creatorcontrib><creatorcontrib>Blurton, Steven P.</creatorcontrib><creatorcontrib>Gondan, Matthias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekaran, Chandramouli</au><au>Blurton, Steven P.</au><au>Gondan, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Audiovisual detection at different intensities and delays</atitle><jtitle>Journal of mathematical psychology</jtitle><addtitle>J Math Psychol</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>91</volume><spage>159</spage><epage>175</epage><pages>159-175</pages><issn>0022-2496</issn><eissn>1096-0880</eissn><abstract>In the redundant signals task, two target stimuli are associated with the same response. If both targets are presented together, redundancy gains are observed, as compared with single-target presentation. Different models explain these redundancy gains, including race and coactivation models (e.g., the Wiener diffusion superposition model, Schwarz, 1994, Journal of Mathematical Psychology, and the Ornstein–Uhlenbeck diffusion superposition model, Diederich, 1995, Journal of Mathematical Psychology). In the present study, two monkeys performed a simple detection task with auditory, visual and audiovisual stimuli of different intensities and onset asynchronies. In its basic form, a Wiener diffusion superposition model provided only a poor description of the observed data, especially of the detection rate (i.e., accuracy or hit rate) for low stimulus intensity. We expanded the model in two ways, by (A) adding a temporal deadline, that is, restricting the evidence accumulation process to a stopping time, and (B) adding a second “nogo” barrier representing target absence. We present closed-form solutions for the mean absorption times and absorption probabilities for a Wiener diffusion process with a drift towards a single barrier in the presence of a temporal deadline (A), and numerically improved solutions for the two-barrier model (B). The best description of the data was obtained from the deadline model and substantially outperformed the two-barrier approach.
•We extend the one-barrier Wiener diffusion superposition model by a deadline.•Closed-form solutions for detection rate and mean response time for asynchronous stimuli.•Improved implementations for two-stage two-barrier Wiener diffusion process.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31404455</pmid><doi>10.1016/j.jmp.2019.05.001</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2496 |
ispartof | Journal of mathematical psychology, 2019-08, Vol.91, p.159-175 |
issn | 0022-2496 1096-0880 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6688765 |
source | Elsevier ScienceDirect Journals |
subjects | Decision-making Monkey Multisensory processing Reaction times Wiener diffusion process |
title | Audiovisual detection at different intensities and delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Audiovisual%20detection%20at%20different%20intensities%20and%20delays&rft.jtitle=Journal%20of%20mathematical%20psychology&rft.au=Chandrasekaran,%20Chandramouli&rft.date=2019-08-01&rft.volume=91&rft.spage=159&rft.epage=175&rft.pages=159-175&rft.issn=0022-2496&rft.eissn=1096-0880&rft_id=info:doi/10.1016/j.jmp.2019.05.001&rft_dat=%3Cproquest_pubme%3E2272734608%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272734608&rft_id=info:pmid/31404455&rft_els_id=S0022249617301815&rfr_iscdi=true |