Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding
Background Rapid volumetric imaging protocols could better utilize limited scanner resources. Purpose To develop and validate an optimized 6‐minute high‐resolution volumetric brain MRI examination using Wave‐CAIPI encoding. Study Type Prospective. Population/Subjects Ten healthy subjects and 20 pati...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2019-09, Vol.50 (3), p.961-974 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 974 |
---|---|
container_issue | 3 |
container_start_page | 961 |
container_title | Journal of magnetic resonance imaging |
container_volume | 50 |
creator | Polak, Daniel Cauley, Stephen Huang, Susie Y. Longo, Maria Gabriela Conklin, John Bilgic, Berkin Ohringer, Ned Raithel, Esther Bachert, Peter Wald, Lawrence L. Setsompop, Kawin |
description | Background
Rapid volumetric imaging protocols could better utilize limited scanner resources.
Purpose
To develop and validate an optimized 6‐minute high‐resolution volumetric brain MRI examination using Wave‐CAIPI encoding.
Study Type
Prospective.
Population/Subjects
Ten healthy subjects and 20 patients with a variety of intracranial pathologies.
Field Strength/Sequence
At 3 T, MPRAGE, T2‐weighted SPACE, SPACE FLAIR, and SWI were acquired at 9‐fold acceleration using Wave‐CAIPI and for comparison at 2–4‐fold acceleration using conventional GRAPPA.
Assessment
Extensive simulations were performed to optimize the Wave‐CAIPI protocol and minimize both g‐factor noise amplification and potential T1/T2 blurring artifacts. Moreover, refinements in the autocalibrated reconstruction of Wave‐CAIPI were developed to ensure high‐quality reconstructions in the presence of gradient imperfections. In a randomized and blinded fashion, three neuroradiologists assessed the diagnostic quality of the optimized 6‐minute Wave‐CAIPI exam and compared it to the roughly 3× slower GRAPPA accelerated protocol using both an individual and head‐to‐head analysis.
Statistical Test
A noninferiority test was used to test whether the diagnostic quality of Wave‐CAIPI was noninferior to the GRAPPA acquisition, with a 15% noninferiority margin.
Results
Among all sequences, Wave‐CAIPI achieved negligible g‐factor noise amplification (gavg ≤ 1.04) and burring artifacts from T1/T2 relaxation. Improvements of our autocalibration approach for gradient imperfections enabled increased robustness to gradient mixing imperfections in tilted‐field of view (FOV) prescriptions as well as variations in gradient and analog‐to‐digital converter (ADC) sampling rates. In the clinical evaluation, Wave‐CAIPI achieved similar mean scores when compared with GRAPPA (MPRAGE: ØW = 4.03, ØG = 3.97; T2w SPACE: ØW = 4.00, ØG = 4.00; SPACE FLAIR: ØW = 3.97, ØG = 3.97; SWI: ØW = 3.93, ØG = 3.83) and was statistically noninferior (N = 30, P |
doi_str_mv | 10.1002/jmri.26678 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6687581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211950034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5148-27a8ec1473eb7555f558c71684f5120d3d64e87efe2e0f48cb000bfbb82ba4783</originalsourceid><addsrcrecordid>eNp9kc9OGzEQhy1ExZ-USx8ArdQLQtpge9dr51IpigoEBbWqWvVoeb2zwdGuHezd0HDiEXhGngTTACo9cLKl-ebTzPwQ-kTwkGBMTxatN0NaFFxsoT3CKE0pE8V2_GOWpURgvov2Q1hgjEejnO2g3QzzLM-E2EO_z838qlk_3N0rraEBrzqokpVr-hY6b3RSemVsAn9Ua6zqjLNJH4ydJ27ZmdbcRvhGrSD2T8bT79MErHZVrH9EH2rVBDh4fgfo1-nXn5PzdPbtbDoZz1LNSC5SypUATXKeQckZYzVjQnNSiLxmhOIqq4ocBIcaKOA6F7qMS5R1WQpaqpyLbIC-bLzLvmyh0mA7rxq59KZVfi2dMvJtxZorOXcrWRSCM0Gi4OhZ4N11D6GTrQnxEo2y4PogKSVkxDCO9xqgz_-hC9d7G9eLFKeEZ6ygkTreUNq7EDzUr8MQLJ_ykk95yb95Rfjw3_Ff0ZeAIkA2wI1pYP2OSl5c_phupI8xtqOp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272173562</pqid></control><display><type>article</type><title>Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Polak, Daniel ; Cauley, Stephen ; Huang, Susie Y. ; Longo, Maria Gabriela ; Conklin, John ; Bilgic, Berkin ; Ohringer, Ned ; Raithel, Esther ; Bachert, Peter ; Wald, Lawrence L. ; Setsompop, Kawin</creator><creatorcontrib>Polak, Daniel ; Cauley, Stephen ; Huang, Susie Y. ; Longo, Maria Gabriela ; Conklin, John ; Bilgic, Berkin ; Ohringer, Ned ; Raithel, Esther ; Bachert, Peter ; Wald, Lawrence L. ; Setsompop, Kawin</creatorcontrib><description>Background
Rapid volumetric imaging protocols could better utilize limited scanner resources.
Purpose
To develop and validate an optimized 6‐minute high‐resolution volumetric brain MRI examination using Wave‐CAIPI encoding.
Study Type
Prospective.
Population/Subjects
Ten healthy subjects and 20 patients with a variety of intracranial pathologies.
Field Strength/Sequence
At 3 T, MPRAGE, T2‐weighted SPACE, SPACE FLAIR, and SWI were acquired at 9‐fold acceleration using Wave‐CAIPI and for comparison at 2–4‐fold acceleration using conventional GRAPPA.
Assessment
Extensive simulations were performed to optimize the Wave‐CAIPI protocol and minimize both g‐factor noise amplification and potential T1/T2 blurring artifacts. Moreover, refinements in the autocalibrated reconstruction of Wave‐CAIPI were developed to ensure high‐quality reconstructions in the presence of gradient imperfections. In a randomized and blinded fashion, three neuroradiologists assessed the diagnostic quality of the optimized 6‐minute Wave‐CAIPI exam and compared it to the roughly 3× slower GRAPPA accelerated protocol using both an individual and head‐to‐head analysis.
Statistical Test
A noninferiority test was used to test whether the diagnostic quality of Wave‐CAIPI was noninferior to the GRAPPA acquisition, with a 15% noninferiority margin.
Results
Among all sequences, Wave‐CAIPI achieved negligible g‐factor noise amplification (gavg ≤ 1.04) and burring artifacts from T1/T2 relaxation. Improvements of our autocalibration approach for gradient imperfections enabled increased robustness to gradient mixing imperfections in tilted‐field of view (FOV) prescriptions as well as variations in gradient and analog‐to‐digital converter (ADC) sampling rates. In the clinical evaluation, Wave‐CAIPI achieved similar mean scores when compared with GRAPPA (MPRAGE: ØW = 4.03, ØG = 3.97; T2w SPACE: ØW = 4.00, ØG = 4.00; SPACE FLAIR: ØW = 3.97, ØG = 3.97; SWI: ØW = 3.93, ØG = 3.83) and was statistically noninferior (N = 30, P < 0.05 for all sequences).
Data Conclusion
The proposed volumetric brain exam retained comparable image quality when compared with the much longer conventional protocol.
Level of Evidence: 2
Technical Efficacy: Stage 1
J. Magn. Reson. Imaging 2019;50:961–974.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26678</identifier><identifier>PMID: 30734388</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acceleration ; Adult ; Aged ; Aged, 80 and over ; Amplification ; Blurring ; Brain ; Brain - diagnostic imaging ; Brain - pathology ; Brain Diseases - diagnostic imaging ; Brain Diseases - pathology ; Converters ; Defects ; Diagnostic systems ; Female ; Field of view ; Field strength ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image quality ; Image reconstruction ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Middle Aged ; Neuroimaging ; Noise ; Organ Size ; Population (statistical) ; Population studies ; Prospective Studies ; Quality assessment ; Reproducibility of Results ; Single-Blind Method ; Statistical tests ; Young Adult</subject><ispartof>Journal of magnetic resonance imaging, 2019-09, Vol.50 (3), p.961-974</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5148-27a8ec1473eb7555f558c71684f5120d3d64e87efe2e0f48cb000bfbb82ba4783</citedby><cites>FETCH-LOGICAL-c5148-27a8ec1473eb7555f558c71684f5120d3d64e87efe2e0f48cb000bfbb82ba4783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.26678$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.26678$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30734388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polak, Daniel</creatorcontrib><creatorcontrib>Cauley, Stephen</creatorcontrib><creatorcontrib>Huang, Susie Y.</creatorcontrib><creatorcontrib>Longo, Maria Gabriela</creatorcontrib><creatorcontrib>Conklin, John</creatorcontrib><creatorcontrib>Bilgic, Berkin</creatorcontrib><creatorcontrib>Ohringer, Ned</creatorcontrib><creatorcontrib>Raithel, Esther</creatorcontrib><creatorcontrib>Bachert, Peter</creatorcontrib><creatorcontrib>Wald, Lawrence L.</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><title>Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background
Rapid volumetric imaging protocols could better utilize limited scanner resources.
Purpose
To develop and validate an optimized 6‐minute high‐resolution volumetric brain MRI examination using Wave‐CAIPI encoding.
Study Type
Prospective.
Population/Subjects
Ten healthy subjects and 20 patients with a variety of intracranial pathologies.
Field Strength/Sequence
At 3 T, MPRAGE, T2‐weighted SPACE, SPACE FLAIR, and SWI were acquired at 9‐fold acceleration using Wave‐CAIPI and for comparison at 2–4‐fold acceleration using conventional GRAPPA.
Assessment
Extensive simulations were performed to optimize the Wave‐CAIPI protocol and minimize both g‐factor noise amplification and potential T1/T2 blurring artifacts. Moreover, refinements in the autocalibrated reconstruction of Wave‐CAIPI were developed to ensure high‐quality reconstructions in the presence of gradient imperfections. In a randomized and blinded fashion, three neuroradiologists assessed the diagnostic quality of the optimized 6‐minute Wave‐CAIPI exam and compared it to the roughly 3× slower GRAPPA accelerated protocol using both an individual and head‐to‐head analysis.
Statistical Test
A noninferiority test was used to test whether the diagnostic quality of Wave‐CAIPI was noninferior to the GRAPPA acquisition, with a 15% noninferiority margin.
Results
Among all sequences, Wave‐CAIPI achieved negligible g‐factor noise amplification (gavg ≤ 1.04) and burring artifacts from T1/T2 relaxation. Improvements of our autocalibration approach for gradient imperfections enabled increased robustness to gradient mixing imperfections in tilted‐field of view (FOV) prescriptions as well as variations in gradient and analog‐to‐digital converter (ADC) sampling rates. In the clinical evaluation, Wave‐CAIPI achieved similar mean scores when compared with GRAPPA (MPRAGE: ØW = 4.03, ØG = 3.97; T2w SPACE: ØW = 4.00, ØG = 4.00; SPACE FLAIR: ØW = 3.97, ØG = 3.97; SWI: ØW = 3.93, ØG = 3.83) and was statistically noninferior (N = 30, P < 0.05 for all sequences).
Data Conclusion
The proposed volumetric brain exam retained comparable image quality when compared with the much longer conventional protocol.
Level of Evidence: 2
Technical Efficacy: Stage 1
J. Magn. Reson. Imaging 2019;50:961–974.</description><subject>Acceleration</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Amplification</subject><subject>Blurring</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain Diseases - diagnostic imaging</subject><subject>Brain Diseases - pathology</subject><subject>Converters</subject><subject>Defects</subject><subject>Diagnostic systems</subject><subject>Female</subject><subject>Field of view</subject><subject>Field strength</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Neuroimaging</subject><subject>Noise</subject><subject>Organ Size</subject><subject>Population (statistical)</subject><subject>Population studies</subject><subject>Prospective Studies</subject><subject>Quality assessment</subject><subject>Reproducibility of Results</subject><subject>Single-Blind Method</subject><subject>Statistical tests</subject><subject>Young Adult</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9OGzEQhy1ExZ-USx8ArdQLQtpge9dr51IpigoEBbWqWvVoeb2zwdGuHezd0HDiEXhGngTTACo9cLKl-ebTzPwQ-kTwkGBMTxatN0NaFFxsoT3CKE0pE8V2_GOWpURgvov2Q1hgjEejnO2g3QzzLM-E2EO_z838qlk_3N0rraEBrzqokpVr-hY6b3RSemVsAn9Ua6zqjLNJH4ydJ27ZmdbcRvhGrSD2T8bT79MErHZVrH9EH2rVBDh4fgfo1-nXn5PzdPbtbDoZz1LNSC5SypUATXKeQckZYzVjQnNSiLxmhOIqq4ocBIcaKOA6F7qMS5R1WQpaqpyLbIC-bLzLvmyh0mA7rxq59KZVfi2dMvJtxZorOXcrWRSCM0Gi4OhZ4N11D6GTrQnxEo2y4PogKSVkxDCO9xqgz_-hC9d7G9eLFKeEZ6ygkTreUNq7EDzUr8MQLJ_ykk95yb95Rfjw3_Ff0ZeAIkA2wI1pYP2OSl5c_phupI8xtqOp</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Polak, Daniel</creator><creator>Cauley, Stephen</creator><creator>Huang, Susie Y.</creator><creator>Longo, Maria Gabriela</creator><creator>Conklin, John</creator><creator>Bilgic, Berkin</creator><creator>Ohringer, Ned</creator><creator>Raithel, Esther</creator><creator>Bachert, Peter</creator><creator>Wald, Lawrence L.</creator><creator>Setsompop, Kawin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201909</creationdate><title>Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding</title><author>Polak, Daniel ; Cauley, Stephen ; Huang, Susie Y. ; Longo, Maria Gabriela ; Conklin, John ; Bilgic, Berkin ; Ohringer, Ned ; Raithel, Esther ; Bachert, Peter ; Wald, Lawrence L. ; Setsompop, Kawin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5148-27a8ec1473eb7555f558c71684f5120d3d64e87efe2e0f48cb000bfbb82ba4783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Amplification</topic><topic>Blurring</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain Diseases - diagnostic imaging</topic><topic>Brain Diseases - pathology</topic><topic>Converters</topic><topic>Defects</topic><topic>Diagnostic systems</topic><topic>Female</topic><topic>Field of view</topic><topic>Field strength</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Neuroimaging</topic><topic>Noise</topic><topic>Organ Size</topic><topic>Population (statistical)</topic><topic>Population studies</topic><topic>Prospective Studies</topic><topic>Quality assessment</topic><topic>Reproducibility of Results</topic><topic>Single-Blind Method</topic><topic>Statistical tests</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polak, Daniel</creatorcontrib><creatorcontrib>Cauley, Stephen</creatorcontrib><creatorcontrib>Huang, Susie Y.</creatorcontrib><creatorcontrib>Longo, Maria Gabriela</creatorcontrib><creatorcontrib>Conklin, John</creatorcontrib><creatorcontrib>Bilgic, Berkin</creatorcontrib><creatorcontrib>Ohringer, Ned</creatorcontrib><creatorcontrib>Raithel, Esther</creatorcontrib><creatorcontrib>Bachert, Peter</creatorcontrib><creatorcontrib>Wald, Lawrence L.</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polak, Daniel</au><au>Cauley, Stephen</au><au>Huang, Susie Y.</au><au>Longo, Maria Gabriela</au><au>Conklin, John</au><au>Bilgic, Berkin</au><au>Ohringer, Ned</au><au>Raithel, Esther</au><au>Bachert, Peter</au><au>Wald, Lawrence L.</au><au>Setsompop, Kawin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2019-09</date><risdate>2019</risdate><volume>50</volume><issue>3</issue><spage>961</spage><epage>974</epage><pages>961-974</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background
Rapid volumetric imaging protocols could better utilize limited scanner resources.
Purpose
To develop and validate an optimized 6‐minute high‐resolution volumetric brain MRI examination using Wave‐CAIPI encoding.
Study Type
Prospective.
Population/Subjects
Ten healthy subjects and 20 patients with a variety of intracranial pathologies.
Field Strength/Sequence
At 3 T, MPRAGE, T2‐weighted SPACE, SPACE FLAIR, and SWI were acquired at 9‐fold acceleration using Wave‐CAIPI and for comparison at 2–4‐fold acceleration using conventional GRAPPA.
Assessment
Extensive simulations were performed to optimize the Wave‐CAIPI protocol and minimize both g‐factor noise amplification and potential T1/T2 blurring artifacts. Moreover, refinements in the autocalibrated reconstruction of Wave‐CAIPI were developed to ensure high‐quality reconstructions in the presence of gradient imperfections. In a randomized and blinded fashion, three neuroradiologists assessed the diagnostic quality of the optimized 6‐minute Wave‐CAIPI exam and compared it to the roughly 3× slower GRAPPA accelerated protocol using both an individual and head‐to‐head analysis.
Statistical Test
A noninferiority test was used to test whether the diagnostic quality of Wave‐CAIPI was noninferior to the GRAPPA acquisition, with a 15% noninferiority margin.
Results
Among all sequences, Wave‐CAIPI achieved negligible g‐factor noise amplification (gavg ≤ 1.04) and burring artifacts from T1/T2 relaxation. Improvements of our autocalibration approach for gradient imperfections enabled increased robustness to gradient mixing imperfections in tilted‐field of view (FOV) prescriptions as well as variations in gradient and analog‐to‐digital converter (ADC) sampling rates. In the clinical evaluation, Wave‐CAIPI achieved similar mean scores when compared with GRAPPA (MPRAGE: ØW = 4.03, ØG = 3.97; T2w SPACE: ØW = 4.00, ØG = 4.00; SPACE FLAIR: ØW = 3.97, ØG = 3.97; SWI: ØW = 3.93, ØG = 3.83) and was statistically noninferior (N = 30, P < 0.05 for all sequences).
Data Conclusion
The proposed volumetric brain exam retained comparable image quality when compared with the much longer conventional protocol.
Level of Evidence: 2
Technical Efficacy: Stage 1
J. Magn. Reson. Imaging 2019;50:961–974.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30734388</pmid><doi>10.1002/jmri.26678</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2019-09, Vol.50 (3), p.961-974 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6687581 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acceleration Adult Aged Aged, 80 and over Amplification Blurring Brain Brain - diagnostic imaging Brain - pathology Brain Diseases - diagnostic imaging Brain Diseases - pathology Converters Defects Diagnostic systems Female Field of view Field strength Humans Image Interpretation, Computer-Assisted - methods Image quality Image reconstruction Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical imaging Middle Aged Neuroimaging Noise Organ Size Population (statistical) Population studies Prospective Studies Quality assessment Reproducibility of Results Single-Blind Method Statistical tests Young Adult |
title | Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%E2%80%90accelerated%20volumetric%20brain%20examination%20using%20optimized%20wave%E2%80%90CAIPI%20encoding&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Polak,%20Daniel&rft.date=2019-09&rft.volume=50&rft.issue=3&rft.spage=961&rft.epage=974&rft.pages=961-974&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26678&rft_dat=%3Cproquest_pubme%3E2211950034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272173562&rft_id=info:pmid/30734388&rfr_iscdi=true |