Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding

Background Rapid volumetric imaging protocols could better utilize limited scanner resources. Purpose To develop and validate an optimized 6‐minute high‐resolution volumetric brain MRI examination using Wave‐CAIPI encoding. Study Type Prospective. Population/Subjects Ten healthy subjects and 20 pati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2019-09, Vol.50 (3), p.961-974
Hauptverfasser: Polak, Daniel, Cauley, Stephen, Huang, Susie Y., Longo, Maria Gabriela, Conklin, John, Bilgic, Berkin, Ohringer, Ned, Raithel, Esther, Bachert, Peter, Wald, Lawrence L., Setsompop, Kawin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 974
container_issue 3
container_start_page 961
container_title Journal of magnetic resonance imaging
container_volume 50
creator Polak, Daniel
Cauley, Stephen
Huang, Susie Y.
Longo, Maria Gabriela
Conklin, John
Bilgic, Berkin
Ohringer, Ned
Raithel, Esther
Bachert, Peter
Wald, Lawrence L.
Setsompop, Kawin
description Background Rapid volumetric imaging protocols could better utilize limited scanner resources. Purpose To develop and validate an optimized 6‐minute high‐resolution volumetric brain MRI examination using Wave‐CAIPI encoding. Study Type Prospective. Population/Subjects Ten healthy subjects and 20 patients with a variety of intracranial pathologies. Field Strength/Sequence At 3 T, MPRAGE, T2‐weighted SPACE, SPACE FLAIR, and SWI were acquired at 9‐fold acceleration using Wave‐CAIPI and for comparison at 2–4‐fold acceleration using conventional GRAPPA. Assessment Extensive simulations were performed to optimize the Wave‐CAIPI protocol and minimize both g‐factor noise amplification and potential T1/T2 blurring artifacts. Moreover, refinements in the autocalibrated reconstruction of Wave‐CAIPI were developed to ensure high‐quality reconstructions in the presence of gradient imperfections. In a randomized and blinded fashion, three neuroradiologists assessed the diagnostic quality of the optimized 6‐minute Wave‐CAIPI exam and compared it to the roughly 3× slower GRAPPA accelerated protocol using both an individual and head‐to‐head analysis. Statistical Test A noninferiority test was used to test whether the diagnostic quality of Wave‐CAIPI was noninferior to the GRAPPA acquisition, with a 15% noninferiority margin. Results Among all sequences, Wave‐CAIPI achieved negligible g‐factor noise amplification (gavg ≤ 1.04) and burring artifacts from T1/T2 relaxation. Improvements of our autocalibration approach for gradient imperfections enabled increased robustness to gradient mixing imperfections in tilted‐field of view (FOV) prescriptions as well as variations in gradient and analog‐to‐digital converter (ADC) sampling rates. In the clinical evaluation, Wave‐CAIPI achieved similar mean scores when compared with GRAPPA (MPRAGE: ØW = 4.03, ØG = 3.97; T2w SPACE: ØW = 4.00, ØG = 4.00; SPACE FLAIR: ØW = 3.97, ØG = 3.97; SWI: ØW = 3.93, ØG = 3.83) and was statistically noninferior (N = 30, P 
doi_str_mv 10.1002/jmri.26678
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6687581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211950034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5148-27a8ec1473eb7555f558c71684f5120d3d64e87efe2e0f48cb000bfbb82ba4783</originalsourceid><addsrcrecordid>eNp9kc9OGzEQhy1ExZ-USx8ArdQLQtpge9dr51IpigoEBbWqWvVoeb2zwdGuHezd0HDiEXhGngTTACo9cLKl-ebTzPwQ-kTwkGBMTxatN0NaFFxsoT3CKE0pE8V2_GOWpURgvov2Q1hgjEejnO2g3QzzLM-E2EO_z838qlk_3N0rraEBrzqokpVr-hY6b3RSemVsAn9Ua6zqjLNJH4ydJ27ZmdbcRvhGrSD2T8bT79MErHZVrH9EH2rVBDh4fgfo1-nXn5PzdPbtbDoZz1LNSC5SypUATXKeQckZYzVjQnNSiLxmhOIqq4ocBIcaKOA6F7qMS5R1WQpaqpyLbIC-bLzLvmyh0mA7rxq59KZVfi2dMvJtxZorOXcrWRSCM0Gi4OhZ4N11D6GTrQnxEo2y4PogKSVkxDCO9xqgz_-hC9d7G9eLFKeEZ6ygkTreUNq7EDzUr8MQLJ_ykk95yb95Rfjw3_Ff0ZeAIkA2wI1pYP2OSl5c_phupI8xtqOp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272173562</pqid></control><display><type>article</type><title>Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Polak, Daniel ; Cauley, Stephen ; Huang, Susie Y. ; Longo, Maria Gabriela ; Conklin, John ; Bilgic, Berkin ; Ohringer, Ned ; Raithel, Esther ; Bachert, Peter ; Wald, Lawrence L. ; Setsompop, Kawin</creator><creatorcontrib>Polak, Daniel ; Cauley, Stephen ; Huang, Susie Y. ; Longo, Maria Gabriela ; Conklin, John ; Bilgic, Berkin ; Ohringer, Ned ; Raithel, Esther ; Bachert, Peter ; Wald, Lawrence L. ; Setsompop, Kawin</creatorcontrib><description>Background Rapid volumetric imaging protocols could better utilize limited scanner resources. Purpose To develop and validate an optimized 6‐minute high‐resolution volumetric brain MRI examination using Wave‐CAIPI encoding. Study Type Prospective. Population/Subjects Ten healthy subjects and 20 patients with a variety of intracranial pathologies. Field Strength/Sequence At 3 T, MPRAGE, T2‐weighted SPACE, SPACE FLAIR, and SWI were acquired at 9‐fold acceleration using Wave‐CAIPI and for comparison at 2–4‐fold acceleration using conventional GRAPPA. Assessment Extensive simulations were performed to optimize the Wave‐CAIPI protocol and minimize both g‐factor noise amplification and potential T1/T2 blurring artifacts. Moreover, refinements in the autocalibrated reconstruction of Wave‐CAIPI were developed to ensure high‐quality reconstructions in the presence of gradient imperfections. In a randomized and blinded fashion, three neuroradiologists assessed the diagnostic quality of the optimized 6‐minute Wave‐CAIPI exam and compared it to the roughly 3× slower GRAPPA accelerated protocol using both an individual and head‐to‐head analysis. Statistical Test A noninferiority test was used to test whether the diagnostic quality of Wave‐CAIPI was noninferior to the GRAPPA acquisition, with a 15% noninferiority margin. Results Among all sequences, Wave‐CAIPI achieved negligible g‐factor noise amplification (gavg ≤ 1.04) and burring artifacts from T1/T2 relaxation. Improvements of our autocalibration approach for gradient imperfections enabled increased robustness to gradient mixing imperfections in tilted‐field of view (FOV) prescriptions as well as variations in gradient and analog‐to‐digital converter (ADC) sampling rates. In the clinical evaluation, Wave‐CAIPI achieved similar mean scores when compared with GRAPPA (MPRAGE: ØW = 4.03, ØG = 3.97; T2w SPACE: ØW = 4.00, ØG = 4.00; SPACE FLAIR: ØW = 3.97, ØG = 3.97; SWI: ØW = 3.93, ØG = 3.83) and was statistically noninferior (N = 30, P &lt; 0.05 for all sequences). Data Conclusion The proposed volumetric brain exam retained comparable image quality when compared with the much longer conventional protocol. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:961–974.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26678</identifier><identifier>PMID: 30734388</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acceleration ; Adult ; Aged ; Aged, 80 and over ; Amplification ; Blurring ; Brain ; Brain - diagnostic imaging ; Brain - pathology ; Brain Diseases - diagnostic imaging ; Brain Diseases - pathology ; Converters ; Defects ; Diagnostic systems ; Female ; Field of view ; Field strength ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image quality ; Image reconstruction ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Middle Aged ; Neuroimaging ; Noise ; Organ Size ; Population (statistical) ; Population studies ; Prospective Studies ; Quality assessment ; Reproducibility of Results ; Single-Blind Method ; Statistical tests ; Young Adult</subject><ispartof>Journal of magnetic resonance imaging, 2019-09, Vol.50 (3), p.961-974</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5148-27a8ec1473eb7555f558c71684f5120d3d64e87efe2e0f48cb000bfbb82ba4783</citedby><cites>FETCH-LOGICAL-c5148-27a8ec1473eb7555f558c71684f5120d3d64e87efe2e0f48cb000bfbb82ba4783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.26678$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.26678$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30734388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polak, Daniel</creatorcontrib><creatorcontrib>Cauley, Stephen</creatorcontrib><creatorcontrib>Huang, Susie Y.</creatorcontrib><creatorcontrib>Longo, Maria Gabriela</creatorcontrib><creatorcontrib>Conklin, John</creatorcontrib><creatorcontrib>Bilgic, Berkin</creatorcontrib><creatorcontrib>Ohringer, Ned</creatorcontrib><creatorcontrib>Raithel, Esther</creatorcontrib><creatorcontrib>Bachert, Peter</creatorcontrib><creatorcontrib>Wald, Lawrence L.</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><title>Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Rapid volumetric imaging protocols could better utilize limited scanner resources. Purpose To develop and validate an optimized 6‐minute high‐resolution volumetric brain MRI examination using Wave‐CAIPI encoding. Study Type Prospective. Population/Subjects Ten healthy subjects and 20 patients with a variety of intracranial pathologies. Field Strength/Sequence At 3 T, MPRAGE, T2‐weighted SPACE, SPACE FLAIR, and SWI were acquired at 9‐fold acceleration using Wave‐CAIPI and for comparison at 2–4‐fold acceleration using conventional GRAPPA. Assessment Extensive simulations were performed to optimize the Wave‐CAIPI protocol and minimize both g‐factor noise amplification and potential T1/T2 blurring artifacts. Moreover, refinements in the autocalibrated reconstruction of Wave‐CAIPI were developed to ensure high‐quality reconstructions in the presence of gradient imperfections. In a randomized and blinded fashion, three neuroradiologists assessed the diagnostic quality of the optimized 6‐minute Wave‐CAIPI exam and compared it to the roughly 3× slower GRAPPA accelerated protocol using both an individual and head‐to‐head analysis. Statistical Test A noninferiority test was used to test whether the diagnostic quality of Wave‐CAIPI was noninferior to the GRAPPA acquisition, with a 15% noninferiority margin. Results Among all sequences, Wave‐CAIPI achieved negligible g‐factor noise amplification (gavg ≤ 1.04) and burring artifacts from T1/T2 relaxation. Improvements of our autocalibration approach for gradient imperfections enabled increased robustness to gradient mixing imperfections in tilted‐field of view (FOV) prescriptions as well as variations in gradient and analog‐to‐digital converter (ADC) sampling rates. In the clinical evaluation, Wave‐CAIPI achieved similar mean scores when compared with GRAPPA (MPRAGE: ØW = 4.03, ØG = 3.97; T2w SPACE: ØW = 4.00, ØG = 4.00; SPACE FLAIR: ØW = 3.97, ØG = 3.97; SWI: ØW = 3.93, ØG = 3.83) and was statistically noninferior (N = 30, P &lt; 0.05 for all sequences). Data Conclusion The proposed volumetric brain exam retained comparable image quality when compared with the much longer conventional protocol. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:961–974.</description><subject>Acceleration</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Amplification</subject><subject>Blurring</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain Diseases - diagnostic imaging</subject><subject>Brain Diseases - pathology</subject><subject>Converters</subject><subject>Defects</subject><subject>Diagnostic systems</subject><subject>Female</subject><subject>Field of view</subject><subject>Field strength</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Neuroimaging</subject><subject>Noise</subject><subject>Organ Size</subject><subject>Population (statistical)</subject><subject>Population studies</subject><subject>Prospective Studies</subject><subject>Quality assessment</subject><subject>Reproducibility of Results</subject><subject>Single-Blind Method</subject><subject>Statistical tests</subject><subject>Young Adult</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9OGzEQhy1ExZ-USx8ArdQLQtpge9dr51IpigoEBbWqWvVoeb2zwdGuHezd0HDiEXhGngTTACo9cLKl-ebTzPwQ-kTwkGBMTxatN0NaFFxsoT3CKE0pE8V2_GOWpURgvov2Q1hgjEejnO2g3QzzLM-E2EO_z838qlk_3N0rraEBrzqokpVr-hY6b3RSemVsAn9Ua6zqjLNJH4ydJ27ZmdbcRvhGrSD2T8bT79MErHZVrH9EH2rVBDh4fgfo1-nXn5PzdPbtbDoZz1LNSC5SypUATXKeQckZYzVjQnNSiLxmhOIqq4ocBIcaKOA6F7qMS5R1WQpaqpyLbIC-bLzLvmyh0mA7rxq59KZVfi2dMvJtxZorOXcrWRSCM0Gi4OhZ4N11D6GTrQnxEo2y4PogKSVkxDCO9xqgz_-hC9d7G9eLFKeEZ6ygkTreUNq7EDzUr8MQLJ_ykk95yb95Rfjw3_Ff0ZeAIkA2wI1pYP2OSl5c_phupI8xtqOp</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Polak, Daniel</creator><creator>Cauley, Stephen</creator><creator>Huang, Susie Y.</creator><creator>Longo, Maria Gabriela</creator><creator>Conklin, John</creator><creator>Bilgic, Berkin</creator><creator>Ohringer, Ned</creator><creator>Raithel, Esther</creator><creator>Bachert, Peter</creator><creator>Wald, Lawrence L.</creator><creator>Setsompop, Kawin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201909</creationdate><title>Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding</title><author>Polak, Daniel ; Cauley, Stephen ; Huang, Susie Y. ; Longo, Maria Gabriela ; Conklin, John ; Bilgic, Berkin ; Ohringer, Ned ; Raithel, Esther ; Bachert, Peter ; Wald, Lawrence L. ; Setsompop, Kawin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5148-27a8ec1473eb7555f558c71684f5120d3d64e87efe2e0f48cb000bfbb82ba4783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Amplification</topic><topic>Blurring</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain Diseases - diagnostic imaging</topic><topic>Brain Diseases - pathology</topic><topic>Converters</topic><topic>Defects</topic><topic>Diagnostic systems</topic><topic>Female</topic><topic>Field of view</topic><topic>Field strength</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Neuroimaging</topic><topic>Noise</topic><topic>Organ Size</topic><topic>Population (statistical)</topic><topic>Population studies</topic><topic>Prospective Studies</topic><topic>Quality assessment</topic><topic>Reproducibility of Results</topic><topic>Single-Blind Method</topic><topic>Statistical tests</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polak, Daniel</creatorcontrib><creatorcontrib>Cauley, Stephen</creatorcontrib><creatorcontrib>Huang, Susie Y.</creatorcontrib><creatorcontrib>Longo, Maria Gabriela</creatorcontrib><creatorcontrib>Conklin, John</creatorcontrib><creatorcontrib>Bilgic, Berkin</creatorcontrib><creatorcontrib>Ohringer, Ned</creatorcontrib><creatorcontrib>Raithel, Esther</creatorcontrib><creatorcontrib>Bachert, Peter</creatorcontrib><creatorcontrib>Wald, Lawrence L.</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polak, Daniel</au><au>Cauley, Stephen</au><au>Huang, Susie Y.</au><au>Longo, Maria Gabriela</au><au>Conklin, John</au><au>Bilgic, Berkin</au><au>Ohringer, Ned</au><au>Raithel, Esther</au><au>Bachert, Peter</au><au>Wald, Lawrence L.</au><au>Setsompop, Kawin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2019-09</date><risdate>2019</risdate><volume>50</volume><issue>3</issue><spage>961</spage><epage>974</epage><pages>961-974</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Rapid volumetric imaging protocols could better utilize limited scanner resources. Purpose To develop and validate an optimized 6‐minute high‐resolution volumetric brain MRI examination using Wave‐CAIPI encoding. Study Type Prospective. Population/Subjects Ten healthy subjects and 20 patients with a variety of intracranial pathologies. Field Strength/Sequence At 3 T, MPRAGE, T2‐weighted SPACE, SPACE FLAIR, and SWI were acquired at 9‐fold acceleration using Wave‐CAIPI and for comparison at 2–4‐fold acceleration using conventional GRAPPA. Assessment Extensive simulations were performed to optimize the Wave‐CAIPI protocol and minimize both g‐factor noise amplification and potential T1/T2 blurring artifacts. Moreover, refinements in the autocalibrated reconstruction of Wave‐CAIPI were developed to ensure high‐quality reconstructions in the presence of gradient imperfections. In a randomized and blinded fashion, three neuroradiologists assessed the diagnostic quality of the optimized 6‐minute Wave‐CAIPI exam and compared it to the roughly 3× slower GRAPPA accelerated protocol using both an individual and head‐to‐head analysis. Statistical Test A noninferiority test was used to test whether the diagnostic quality of Wave‐CAIPI was noninferior to the GRAPPA acquisition, with a 15% noninferiority margin. Results Among all sequences, Wave‐CAIPI achieved negligible g‐factor noise amplification (gavg ≤ 1.04) and burring artifacts from T1/T2 relaxation. Improvements of our autocalibration approach for gradient imperfections enabled increased robustness to gradient mixing imperfections in tilted‐field of view (FOV) prescriptions as well as variations in gradient and analog‐to‐digital converter (ADC) sampling rates. In the clinical evaluation, Wave‐CAIPI achieved similar mean scores when compared with GRAPPA (MPRAGE: ØW = 4.03, ØG = 3.97; T2w SPACE: ØW = 4.00, ØG = 4.00; SPACE FLAIR: ØW = 3.97, ØG = 3.97; SWI: ØW = 3.93, ØG = 3.83) and was statistically noninferior (N = 30, P &lt; 0.05 for all sequences). Data Conclusion The proposed volumetric brain exam retained comparable image quality when compared with the much longer conventional protocol. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:961–974.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30734388</pmid><doi>10.1002/jmri.26678</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2019-09, Vol.50 (3), p.961-974
issn 1053-1807
1522-2586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6687581
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acceleration
Adult
Aged
Aged, 80 and over
Amplification
Blurring
Brain
Brain - diagnostic imaging
Brain - pathology
Brain Diseases - diagnostic imaging
Brain Diseases - pathology
Converters
Defects
Diagnostic systems
Female
Field of view
Field strength
Humans
Image Interpretation, Computer-Assisted - methods
Image quality
Image reconstruction
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Middle Aged
Neuroimaging
Noise
Organ Size
Population (statistical)
Population studies
Prospective Studies
Quality assessment
Reproducibility of Results
Single-Blind Method
Statistical tests
Young Adult
title Highly‐accelerated volumetric brain examination using optimized wave‐CAIPI encoding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%E2%80%90accelerated%20volumetric%20brain%20examination%20using%20optimized%20wave%E2%80%90CAIPI%20encoding&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Polak,%20Daniel&rft.date=2019-09&rft.volume=50&rft.issue=3&rft.spage=961&rft.epage=974&rft.pages=961-974&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26678&rft_dat=%3Cproquest_pubme%3E2211950034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272173562&rft_id=info:pmid/30734388&rfr_iscdi=true