Random walks in a moderately sparse random environment
A random walk in a sparse random environment is a model introduced by Matzavinos et al. [Electron. J. Probab. 21, paper no. 72: 2016] as a generalization of both a simple symmetric random walk and a classical random walk in a random environment. A random walk in a sparse random environment is a near...
Gespeichert in:
Veröffentlicht in: | Electronic journal of probability 2019, Vol.24 (none) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | none |
container_start_page | |
container_title | Electronic journal of probability |
container_volume | 24 |
creator | Buraczewski, Dariusz Dyszewski, Piotr Iksanov, Alexander Marynych, Alexander Roitershtein, Alexander |
description | A random walk in a sparse random environment is a model introduced by Matzavinos et al. [Electron. J. Probab. 21, paper no. 72: 2016] as a generalization of both a simple symmetric random walk and a classical random walk in a random environment. A random walk
in a sparse random environment
is a nearest neighbor random walk on
that jumps to the left or to the right with probability 1
2 from every point of
and jumps to the right (left) with the random probability λ
(1 - λ
) from the point
,
. Assuming that
are independent copies of a random vector
and the mean
is finite (moderate sparsity) we obtain stable limit laws for
, properly normalized and centered, as
→
. While the case
≤
a.s. for some deterministic
> 0 (weak sparsity) was analyzed by Matzavinos et al., the case
(strong sparsity) will be analyzed in a forthcoming paper. |
doi_str_mv | 10.1214/19-EJP330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6687397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2270014581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-adb22e29d3043d2799a3c7b0d9a7873b41722963cf80828dc3a0e009886d4cba3</originalsourceid><addsrcrecordid>eNpVkMtKAzEUhoMoVqsLX0BmqYvR3JrLRpBSbxQU0XU4k6Q6OjOpybTSt3dkaqmrc-B8fP_hR-iE4AtCCb8kOp88PDGGd9ABwYrlgiu9u7UP0GFKHxhTzIXaRwNGmBYY6wMknqFxoc6-ofpMWdlkkNXB-Qitr1ZZmkNMPos945tlGUNT-6Y9QnszqJI_Xs8her2ZvIzv8unj7f34eppbJkdtDq6g1FPtGObMUak1MCsL7DRIJVnBiaRUC2ZnCiuqnGWAffeXUsJxWwAboqveO18UtXe2i45QmXksa4grE6A0_y9N-W7ewtII0fm17ARna0EMXwufWlOXyfqqgsaHRTKUSowJHynSoec9amNIKfrZJoZg89uzIdr0PXfs6fZfG_KvWPYDXGJ4KQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270014581</pqid></control><display><type>article</type><title>Random walks in a moderately sparse random environment</title><source>DOAJ Directory of Open Access Journals</source><source>Project Euclid Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Buraczewski, Dariusz ; Dyszewski, Piotr ; Iksanov, Alexander ; Marynych, Alexander ; Roitershtein, Alexander</creator><creatorcontrib>Buraczewski, Dariusz ; Dyszewski, Piotr ; Iksanov, Alexander ; Marynych, Alexander ; Roitershtein, Alexander</creatorcontrib><description>A random walk in a sparse random environment is a model introduced by Matzavinos et al. [Electron. J. Probab. 21, paper no. 72: 2016] as a generalization of both a simple symmetric random walk and a classical random walk in a random environment. A random walk
in a sparse random environment
is a nearest neighbor random walk on
that jumps to the left or to the right with probability 1
2 from every point of
and jumps to the right (left) with the random probability λ
(1 - λ
) from the point
,
. Assuming that
are independent copies of a random vector
and the mean
is finite (moderate sparsity) we obtain stable limit laws for
, properly normalized and centered, as
→
. While the case
≤
a.s. for some deterministic
> 0 (weak sparsity) was analyzed by Matzavinos et al., the case
(strong sparsity) will be analyzed in a forthcoming paper.</description><identifier>ISSN: 1083-6489</identifier><identifier>EISSN: 1083-6489</identifier><identifier>DOI: 10.1214/19-EJP330</identifier><identifier>PMID: 31396009</identifier><language>eng</language><publisher>United States</publisher><ispartof>Electronic journal of probability, 2019, Vol.24 (none)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-adb22e29d3043d2799a3c7b0d9a7873b41722963cf80828dc3a0e009886d4cba3</citedby><cites>FETCH-LOGICAL-c375t-adb22e29d3043d2799a3c7b0d9a7873b41722963cf80828dc3a0e009886d4cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31396009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buraczewski, Dariusz</creatorcontrib><creatorcontrib>Dyszewski, Piotr</creatorcontrib><creatorcontrib>Iksanov, Alexander</creatorcontrib><creatorcontrib>Marynych, Alexander</creatorcontrib><creatorcontrib>Roitershtein, Alexander</creatorcontrib><title>Random walks in a moderately sparse random environment</title><title>Electronic journal of probability</title><addtitle>Electron J Probab</addtitle><description>A random walk in a sparse random environment is a model introduced by Matzavinos et al. [Electron. J. Probab. 21, paper no. 72: 2016] as a generalization of both a simple symmetric random walk and a classical random walk in a random environment. A random walk
in a sparse random environment
is a nearest neighbor random walk on
that jumps to the left or to the right with probability 1
2 from every point of
and jumps to the right (left) with the random probability λ
(1 - λ
) from the point
,
. Assuming that
are independent copies of a random vector
and the mean
is finite (moderate sparsity) we obtain stable limit laws for
, properly normalized and centered, as
→
. While the case
≤
a.s. for some deterministic
> 0 (weak sparsity) was analyzed by Matzavinos et al., the case
(strong sparsity) will be analyzed in a forthcoming paper.</description><issn>1083-6489</issn><issn>1083-6489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkMtKAzEUhoMoVqsLX0BmqYvR3JrLRpBSbxQU0XU4k6Q6OjOpybTSt3dkaqmrc-B8fP_hR-iE4AtCCb8kOp88PDGGd9ABwYrlgiu9u7UP0GFKHxhTzIXaRwNGmBYY6wMknqFxoc6-ofpMWdlkkNXB-Qitr1ZZmkNMPos945tlGUNT-6Y9QnszqJI_Xs8her2ZvIzv8unj7f34eppbJkdtDq6g1FPtGObMUak1MCsL7DRIJVnBiaRUC2ZnCiuqnGWAffeXUsJxWwAboqveO18UtXe2i45QmXksa4grE6A0_y9N-W7ewtII0fm17ARna0EMXwufWlOXyfqqgsaHRTKUSowJHynSoec9amNIKfrZJoZg89uzIdr0PXfs6fZfG_KvWPYDXGJ4KQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Buraczewski, Dariusz</creator><creator>Dyszewski, Piotr</creator><creator>Iksanov, Alexander</creator><creator>Marynych, Alexander</creator><creator>Roitershtein, Alexander</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2019</creationdate><title>Random walks in a moderately sparse random environment</title><author>Buraczewski, Dariusz ; Dyszewski, Piotr ; Iksanov, Alexander ; Marynych, Alexander ; Roitershtein, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-adb22e29d3043d2799a3c7b0d9a7873b41722963cf80828dc3a0e009886d4cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buraczewski, Dariusz</creatorcontrib><creatorcontrib>Dyszewski, Piotr</creatorcontrib><creatorcontrib>Iksanov, Alexander</creatorcontrib><creatorcontrib>Marynych, Alexander</creatorcontrib><creatorcontrib>Roitershtein, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Electronic journal of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buraczewski, Dariusz</au><au>Dyszewski, Piotr</au><au>Iksanov, Alexander</au><au>Marynych, Alexander</au><au>Roitershtein, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random walks in a moderately sparse random environment</atitle><jtitle>Electronic journal of probability</jtitle><addtitle>Electron J Probab</addtitle><date>2019</date><risdate>2019</risdate><volume>24</volume><issue>none</issue><issn>1083-6489</issn><eissn>1083-6489</eissn><abstract>A random walk in a sparse random environment is a model introduced by Matzavinos et al. [Electron. J. Probab. 21, paper no. 72: 2016] as a generalization of both a simple symmetric random walk and a classical random walk in a random environment. A random walk
in a sparse random environment
is a nearest neighbor random walk on
that jumps to the left or to the right with probability 1
2 from every point of
and jumps to the right (left) with the random probability λ
(1 - λ
) from the point
,
. Assuming that
are independent copies of a random vector
and the mean
is finite (moderate sparsity) we obtain stable limit laws for
, properly normalized and centered, as
→
. While the case
≤
a.s. for some deterministic
> 0 (weak sparsity) was analyzed by Matzavinos et al., the case
(strong sparsity) will be analyzed in a forthcoming paper.</abstract><cop>United States</cop><pmid>31396009</pmid><doi>10.1214/19-EJP330</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-6489 |
ispartof | Electronic journal of probability, 2019, Vol.24 (none) |
issn | 1083-6489 1083-6489 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6687397 |
source | DOAJ Directory of Open Access Journals; Project Euclid Open Access; EZB-FREE-00999 freely available EZB journals |
title | Random walks in a moderately sparse random environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20walks%20in%20a%20moderately%20sparse%20random%20environment&rft.jtitle=Electronic%20journal%20of%20probability&rft.au=Buraczewski,%20Dariusz&rft.date=2019&rft.volume=24&rft.issue=none&rft.issn=1083-6489&rft.eissn=1083-6489&rft_id=info:doi/10.1214/19-EJP330&rft_dat=%3Cproquest_pubme%3E2270014581%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270014581&rft_id=info:pmid/31396009&rfr_iscdi=true |