A computational fluid dynamics approach to determine white matter permeability

Glioblastomas represent a challenging problem with an extremely poor survival rate. Since these tumour cells have a highly invasive character, an effective surgical resection as well as chemotherapy and radiotherapy is very difficult. Convection-enhanced delivery (CED), a technique that consists in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomechanics and modeling in mechanobiology 2019-08, Vol.18 (4), p.1111-1122
Hauptverfasser: Vidotto, Marco, Botnariuc, Daniela, De Momi, Elena, Dini, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1122
container_issue 4
container_start_page 1111
container_title Biomechanics and modeling in mechanobiology
container_volume 18
creator Vidotto, Marco
Botnariuc, Daniela
De Momi, Elena
Dini, Daniele
description Glioblastomas represent a challenging problem with an extremely poor survival rate. Since these tumour cells have a highly invasive character, an effective surgical resection as well as chemotherapy and radiotherapy is very difficult. Convection-enhanced delivery (CED), a technique that consists in the injection of a therapeutic agent directly into the parenchyma, has shown encouraging results. Its efficacy depends on the ability to predict, in the pre-operative phase, the distribution of the drug inside the tumour. This paper proposes a method to compute a fundamental parameter for CED modelling outcomes, the hydraulic permeability, in three brain structures. Therefore, a bidimensional brain-like structure was built out of the main geometrical features of the white matter: axon diameter distribution extrapolated from electron microscopy images, extracellular space (ECS) volume fraction and ECS width. The axons were randomly allocated inside a defined border, and the ECS volume fraction as well as the ECS width maintained in a physiological range. To achieve this result, an outward packing method coupled with a disc shrinking technique was implemented. The fluid flow through the axons was computed by solving Navier–Stokes equations within the computational fluid dynamics solver ANSYS. From the fluid and pressure fields, an homogenisation technique allowed establishing the optimal representative volume element (RVE) size. The hydraulic permeability computed on the RVE was found in good agreement with experimental data from the literature.
doi_str_mv 10.1007/s10237-019-01131-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6685924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184139462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6df36970a240dfd18ba1be72cf48d5869b73f76dff80d4f3b117507e371953183</originalsourceid><addsrcrecordid>eNp9kUFPHSEQx4mpUat-AQ8NSS-9bMsAu7AXE2OqbWLqRc-EXcCH2V22wGrety_16dN66IHMZOY3fxj-CJ0A-QqEiG8JCGWiItCWAwwqsYMOoAFRiZaTD9u8bvfRx5TuCaGESbaH9hkRsmT8AP06w30Y5yXr7MOkB-yGxRts1pMefZ-wnucYdL_COWBjs42jnyx-XPls8ahzKeC5FK3u_ODz-gjtOj0ke_wcD9Htxfeb8x_V1fXlz_Ozq6rngueqMY41rSCacmKcAdlp6KygvePS1LJpO8GcKJSTxHDHOgBRE2GZgLZmINkhOt3ozks3WtPbKUc9qDn6Uce1CtqrfzuTX6m78KCaRtYt5UXgy7NADL8Xm7IafertMOjJhiUpCpIDa3lDC_r5HXofllj-6olinFBZN4WiG6qPIaVo3fYxQNRfu9TGLlXsUk92KVGGPr1dYzvy4k8B2AZIpTXd2fh6939k_wC4kKEf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183402856</pqid></control><display><type>article</type><title>A computational fluid dynamics approach to determine white matter permeability</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Vidotto, Marco ; Botnariuc, Daniela ; De Momi, Elena ; Dini, Daniele</creator><creatorcontrib>Vidotto, Marco ; Botnariuc, Daniela ; De Momi, Elena ; Dini, Daniele</creatorcontrib><description>Glioblastomas represent a challenging problem with an extremely poor survival rate. Since these tumour cells have a highly invasive character, an effective surgical resection as well as chemotherapy and radiotherapy is very difficult. Convection-enhanced delivery (CED), a technique that consists in the injection of a therapeutic agent directly into the parenchyma, has shown encouraging results. Its efficacy depends on the ability to predict, in the pre-operative phase, the distribution of the drug inside the tumour. This paper proposes a method to compute a fundamental parameter for CED modelling outcomes, the hydraulic permeability, in three brain structures. Therefore, a bidimensional brain-like structure was built out of the main geometrical features of the white matter: axon diameter distribution extrapolated from electron microscopy images, extracellular space (ECS) volume fraction and ECS width. The axons were randomly allocated inside a defined border, and the ECS volume fraction as well as the ECS width maintained in a physiological range. To achieve this result, an outward packing method coupled with a disc shrinking technique was implemented. The fluid flow through the axons was computed by solving Navier–Stokes equations within the computational fluid dynamics solver ANSYS. From the fluid and pressure fields, an homogenisation technique allowed establishing the optimal representative volume element (RVE) size. The hydraulic permeability computed on the RVE was found in good agreement with experimental data from the literature.</description><identifier>ISSN: 1617-7959</identifier><identifier>ISSN: 1617-7940</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-019-01131-7</identifier><identifier>PMID: 30783834</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Animals ; Axons ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Brain ; CAD ; Chemical compounds ; Chemotherapy ; Computational fluid dynamics ; Computational neuroscience ; Computer aided design ; Convection ; Electron microscopy ; Engineering ; Extracellular matrix ; Extracellular Space - metabolism ; Fluid dynamics ; Fluid flow ; Haplorhini ; Humans ; Hydraulic permeability ; Hydrodynamics ; Mice ; Original Paper ; Parenchyma ; Permeability ; Pharmacology ; Pressure ; Radiation therapy ; Substantia alba ; Survival ; Theoretical and Applied Mechanics ; Tumors ; White Matter - physiology</subject><ispartof>Biomechanics and modeling in mechanobiology, 2019-08, Vol.18 (4), p.1111-1122</ispartof><rights>The Author(s) 2019. corrected publication 2019</rights><rights>Biomechanics and Modeling in Mechanobiology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019, corrected publication 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6df36970a240dfd18ba1be72cf48d5869b73f76dff80d4f3b117507e371953183</citedby><cites>FETCH-LOGICAL-c474t-6df36970a240dfd18ba1be72cf48d5869b73f76dff80d4f3b117507e371953183</cites><orcidid>0000-0002-2327-0148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10237-019-01131-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10237-019-01131-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30783834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidotto, Marco</creatorcontrib><creatorcontrib>Botnariuc, Daniela</creatorcontrib><creatorcontrib>De Momi, Elena</creatorcontrib><creatorcontrib>Dini, Daniele</creatorcontrib><title>A computational fluid dynamics approach to determine white matter permeability</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>Glioblastomas represent a challenging problem with an extremely poor survival rate. Since these tumour cells have a highly invasive character, an effective surgical resection as well as chemotherapy and radiotherapy is very difficult. Convection-enhanced delivery (CED), a technique that consists in the injection of a therapeutic agent directly into the parenchyma, has shown encouraging results. Its efficacy depends on the ability to predict, in the pre-operative phase, the distribution of the drug inside the tumour. This paper proposes a method to compute a fundamental parameter for CED modelling outcomes, the hydraulic permeability, in three brain structures. Therefore, a bidimensional brain-like structure was built out of the main geometrical features of the white matter: axon diameter distribution extrapolated from electron microscopy images, extracellular space (ECS) volume fraction and ECS width. The axons were randomly allocated inside a defined border, and the ECS volume fraction as well as the ECS width maintained in a physiological range. To achieve this result, an outward packing method coupled with a disc shrinking technique was implemented. The fluid flow through the axons was computed by solving Navier–Stokes equations within the computational fluid dynamics solver ANSYS. From the fluid and pressure fields, an homogenisation technique allowed establishing the optimal representative volume element (RVE) size. The hydraulic permeability computed on the RVE was found in good agreement with experimental data from the literature.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Axons</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Brain</subject><subject>CAD</subject><subject>Chemical compounds</subject><subject>Chemotherapy</subject><subject>Computational fluid dynamics</subject><subject>Computational neuroscience</subject><subject>Computer aided design</subject><subject>Convection</subject><subject>Electron microscopy</subject><subject>Engineering</subject><subject>Extracellular matrix</subject><subject>Extracellular Space - metabolism</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Haplorhini</subject><subject>Humans</subject><subject>Hydraulic permeability</subject><subject>Hydrodynamics</subject><subject>Mice</subject><subject>Original Paper</subject><subject>Parenchyma</subject><subject>Permeability</subject><subject>Pharmacology</subject><subject>Pressure</subject><subject>Radiation therapy</subject><subject>Substantia alba</subject><subject>Survival</subject><subject>Theoretical and Applied Mechanics</subject><subject>Tumors</subject><subject>White Matter - physiology</subject><issn>1617-7959</issn><issn>1617-7940</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFPHSEQx4mpUat-AQ8NSS-9bMsAu7AXE2OqbWLqRc-EXcCH2V22wGrety_16dN66IHMZOY3fxj-CJ0A-QqEiG8JCGWiItCWAwwqsYMOoAFRiZaTD9u8bvfRx5TuCaGESbaH9hkRsmT8AP06w30Y5yXr7MOkB-yGxRts1pMefZ-wnucYdL_COWBjs42jnyx-XPls8ahzKeC5FK3u_ODz-gjtOj0ke_wcD9Htxfeb8x_V1fXlz_Ozq6rngueqMY41rSCacmKcAdlp6KygvePS1LJpO8GcKJSTxHDHOgBRE2GZgLZmINkhOt3ozks3WtPbKUc9qDn6Uce1CtqrfzuTX6m78KCaRtYt5UXgy7NADL8Xm7IafertMOjJhiUpCpIDa3lDC_r5HXofllj-6olinFBZN4WiG6qPIaVo3fYxQNRfu9TGLlXsUk92KVGGPr1dYzvy4k8B2AZIpTXd2fh6939k_wC4kKEf</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Vidotto, Marco</creator><creator>Botnariuc, Daniela</creator><creator>De Momi, Elena</creator><creator>Dini, Daniele</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2327-0148</orcidid></search><sort><creationdate>20190801</creationdate><title>A computational fluid dynamics approach to determine white matter permeability</title><author>Vidotto, Marco ; Botnariuc, Daniela ; De Momi, Elena ; Dini, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6df36970a240dfd18ba1be72cf48d5869b73f76dff80d4f3b117507e371953183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Axons</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Brain</topic><topic>CAD</topic><topic>Chemical compounds</topic><topic>Chemotherapy</topic><topic>Computational fluid dynamics</topic><topic>Computational neuroscience</topic><topic>Computer aided design</topic><topic>Convection</topic><topic>Electron microscopy</topic><topic>Engineering</topic><topic>Extracellular matrix</topic><topic>Extracellular Space - metabolism</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Haplorhini</topic><topic>Humans</topic><topic>Hydraulic permeability</topic><topic>Hydrodynamics</topic><topic>Mice</topic><topic>Original Paper</topic><topic>Parenchyma</topic><topic>Permeability</topic><topic>Pharmacology</topic><topic>Pressure</topic><topic>Radiation therapy</topic><topic>Substantia alba</topic><topic>Survival</topic><topic>Theoretical and Applied Mechanics</topic><topic>Tumors</topic><topic>White Matter - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidotto, Marco</creatorcontrib><creatorcontrib>Botnariuc, Daniela</creatorcontrib><creatorcontrib>De Momi, Elena</creatorcontrib><creatorcontrib>Dini, Daniele</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidotto, Marco</au><au>Botnariuc, Daniela</au><au>De Momi, Elena</au><au>Dini, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational fluid dynamics approach to determine white matter permeability</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>18</volume><issue>4</issue><spage>1111</spage><epage>1122</epage><pages>1111-1122</pages><issn>1617-7959</issn><issn>1617-7940</issn><eissn>1617-7940</eissn><abstract>Glioblastomas represent a challenging problem with an extremely poor survival rate. Since these tumour cells have a highly invasive character, an effective surgical resection as well as chemotherapy and radiotherapy is very difficult. Convection-enhanced delivery (CED), a technique that consists in the injection of a therapeutic agent directly into the parenchyma, has shown encouraging results. Its efficacy depends on the ability to predict, in the pre-operative phase, the distribution of the drug inside the tumour. This paper proposes a method to compute a fundamental parameter for CED modelling outcomes, the hydraulic permeability, in three brain structures. Therefore, a bidimensional brain-like structure was built out of the main geometrical features of the white matter: axon diameter distribution extrapolated from electron microscopy images, extracellular space (ECS) volume fraction and ECS width. The axons were randomly allocated inside a defined border, and the ECS volume fraction as well as the ECS width maintained in a physiological range. To achieve this result, an outward packing method coupled with a disc shrinking technique was implemented. The fluid flow through the axons was computed by solving Navier–Stokes equations within the computational fluid dynamics solver ANSYS. From the fluid and pressure fields, an homogenisation technique allowed establishing the optimal representative volume element (RVE) size. The hydraulic permeability computed on the RVE was found in good agreement with experimental data from the literature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30783834</pmid><doi>10.1007/s10237-019-01131-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2327-0148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7959
ispartof Biomechanics and modeling in mechanobiology, 2019-08, Vol.18 (4), p.1111-1122
issn 1617-7959
1617-7940
1617-7940
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6685924
source MEDLINE; SpringerLink Journals
subjects Algorithms
Animals
Axons
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Brain
CAD
Chemical compounds
Chemotherapy
Computational fluid dynamics
Computational neuroscience
Computer aided design
Convection
Electron microscopy
Engineering
Extracellular matrix
Extracellular Space - metabolism
Fluid dynamics
Fluid flow
Haplorhini
Humans
Hydraulic permeability
Hydrodynamics
Mice
Original Paper
Parenchyma
Permeability
Pharmacology
Pressure
Radiation therapy
Substantia alba
Survival
Theoretical and Applied Mechanics
Tumors
White Matter - physiology
title A computational fluid dynamics approach to determine white matter permeability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20fluid%20dynamics%20approach%20to%20determine%20white%20matter%20permeability&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Vidotto,%20Marco&rft.date=2019-08-01&rft.volume=18&rft.issue=4&rft.spage=1111&rft.epage=1122&rft.pages=1111-1122&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-019-01131-7&rft_dat=%3Cproquest_pubme%3E2184139462%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183402856&rft_id=info:pmid/30783834&rfr_iscdi=true