Antiproliferative and Antitumour Effect of Nongenotoxic Silver Nanoparticles on Melanoma Models

During the last 3 decades, there has been a slow advance to obtain new treatments for malignant melanoma that improve patient survival. In this work, we present a systematic study focused on the antiproliferative and antitumour effect of AgNPs. These nanoparticles are fully characterized, are coated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2019, Vol.2019 (2019), p.1-12
Hauptverfasser: Bogdanchikova, Nina, Toledano-Magaña, Yanis, Pestryakov, Alexey, Gómez, Claudia, Torres-Bugarín, Olivia, García-Ramos, Juan C., Girón-Vázquez, Nayeli G., Valenzuela-Salas, Lucía M., Villarreal-Gómez, Luis J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2019
container_start_page 1
container_title Oxidative medicine and cellular longevity
container_volume 2019
creator Bogdanchikova, Nina
Toledano-Magaña, Yanis
Pestryakov, Alexey
Gómez, Claudia
Torres-Bugarín, Olivia
García-Ramos, Juan C.
Girón-Vázquez, Nayeli G.
Valenzuela-Salas, Lucía M.
Villarreal-Gómez, Luis J.
description During the last 3 decades, there has been a slow advance to obtain new treatments for malignant melanoma that improve patient survival. In this work, we present a systematic study focused on the antiproliferative and antitumour effect of AgNPs. These nanoparticles are fully characterized, are coated with polyvinylpyrrolidone (PVP), and have an average size of 35±15 nm and a metallic silver content of 1.2% wt. Main changes on cell viability, induction of apoptosis and necrosis, and ROS generation were found on B16-F10 cells after six hours of exposure to AgNPs (IC50=4.2 μg/mL) or Cisplatin (IC50=2.0 μg/mL). Despite the similar response for both AgNPs and Cisplatin on antiproliferative potency (cellular viability of 53.95±1.88 and 53.62±1.04) and ROS production (20.27±1.09% and 19.50±0.35%), significantly different cell death pathways were triggered. While AgNPs induce only apoptosis (45.98±1.88%), Cisplatin induces apoptosis and necrosis at the same rate (22.31±1.72% and 24.07±1.10%, respectively). In addition to their antiproliferative activity, in vivo experiments showed that treatments of 3, 6, and 12 mg/kg of AgNPs elicit a survival rate almost 4 times higher (P
doi_str_mv 10.1155/2019/4528241
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6683800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601028825</galeid><sourcerecordid>A601028825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-f16ec3f0f46dd3df5a9f80ef304cdff7f628956d5d0e9439c237193b7bd203613</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxS0EoqVw44wscSyh44911hekqCofUlsOwNly7HHqatcO9ibAf4-jhBRunGY089PTm3mEvGTwlrGuu-DA9IXseM8le0ROmZZ8BlrLx8ce4IQ8q_UeQIkGPSUngsnGc3VKzCJNcV3yEAMWO8UtUps83U2nzZg3hV6FgG6iOdDbnFaY8pR_Rke_xGGLhd7alNe2TNENWGlO9AaHNhotvckeh_qcPAl2qPjiUM_It_dXXy8_zq4_f_h0ubieOan1NAtMoRMBglTeCx86q0MPGARI50OYB8V73SnfeUAthXZczJkWy_nScxCKiTPybq-73ixH9A7TVOxg1iWOtvwy2Ubz7ybFO7PKW6NUL3qAJvD6IFDy9w3Wydy361PzbNqjeq4YCP5AreyAJqaQm5gbY3VmoYAB73veNerNnnIl11owHH0wMLvQzC40cwit4a_-9n6E_6TUgPM9cBeTtz_if8phYzDYB3r3qnbqbzqHqWM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268261032</pqid></control><display><type>article</type><title>Antiproliferative and Antitumour Effect of Nongenotoxic Silver Nanoparticles on Melanoma Models</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Bogdanchikova, Nina ; Toledano-Magaña, Yanis ; Pestryakov, Alexey ; Gómez, Claudia ; Torres-Bugarín, Olivia ; García-Ramos, Juan C. ; Girón-Vázquez, Nayeli G. ; Valenzuela-Salas, Lucía M. ; Villarreal-Gómez, Luis J.</creator><contributor>Kaushik, Nagendra K. ; Nagendra K Kaushik</contributor><creatorcontrib>Bogdanchikova, Nina ; Toledano-Magaña, Yanis ; Pestryakov, Alexey ; Gómez, Claudia ; Torres-Bugarín, Olivia ; García-Ramos, Juan C. ; Girón-Vázquez, Nayeli G. ; Valenzuela-Salas, Lucía M. ; Villarreal-Gómez, Luis J. ; Kaushik, Nagendra K. ; Nagendra K Kaushik</creatorcontrib><description>During the last 3 decades, there has been a slow advance to obtain new treatments for malignant melanoma that improve patient survival. In this work, we present a systematic study focused on the antiproliferative and antitumour effect of AgNPs. These nanoparticles are fully characterized, are coated with polyvinylpyrrolidone (PVP), and have an average size of 35±15 nm and a metallic silver content of 1.2% wt. Main changes on cell viability, induction of apoptosis and necrosis, and ROS generation were found on B16-F10 cells after six hours of exposure to AgNPs (IC50=4.2 μg/mL) or Cisplatin (IC50=2.0 μg/mL). Despite the similar response for both AgNPs and Cisplatin on antiproliferative potency (cellular viability of 53.95±1.88 and 53.62±1.04) and ROS production (20.27±1.09% and 19.50±0.35%), significantly different cell death pathways were triggered. While AgNPs induce only apoptosis (45.98±1.88%), Cisplatin induces apoptosis and necrosis at the same rate (22.31±1.72% and 24.07±1.10%, respectively). In addition to their antiproliferative activity, in vivo experiments showed that treatments of 3, 6, and 12 mg/kg of AgNPs elicit a survival rate almost 4 times higher (P&lt;0.05) compared with the survival rate obtained with Cisplatin (2 mg/kg). Furthermore, the survivor mice treated with AgNPs do not show genotoxic damage determined by micronuclei frequency quantification on peripheral blood cells. These results exhibit the remarkable antitumour activity of a nongenotoxic AgNP formulation and constitute the first advance toward the application of these AgNPs for melanoma treatment, which could considerably reduce adverse effects provoked by currently applied chemotherapeutics.</description><identifier>ISSN: 1942-0900</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2019/4528241</identifier><identifier>PMID: 31428226</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Animals ; Apoptosis ; Apoptosis - drug effects ; Autophagy ; Cancer ; Cancer therapies ; Care and treatment ; Cell growth ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cisplatin ; Cisplatin - therapeutic use ; Cytotoxicity ; DNA Damage - drug effects ; Erythrocytes - cytology ; Erythrocytes - drug effects ; Erythrocytes - metabolism ; Hematology ; Iron ; Kaplan-Meier Estimate ; Male ; Melanoma ; Melanoma, Experimental - drug therapy ; Melanoma, Experimental - mortality ; Melanoma, Experimental - pathology ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - therapeutic use ; Metal Nanoparticles - toxicity ; Mice ; Mice, Inbred C57BL ; Nanomaterials ; Nanoparticles ; Povidone ; Reactive Oxygen Species - metabolism ; Silver ; Silver - chemistry ; Skin cancer ; Toxicology</subject><ispartof>Oxidative medicine and cellular longevity, 2019, Vol.2019 (2019), p.1-12</ispartof><rights>Copyright © 2019 Lucía M. Valenzuela-Salas et al.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2019 Lucía M. Valenzuela-Salas et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2019 Lucía M. Valenzuela-Salas et al. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-f16ec3f0f46dd3df5a9f80ef304cdff7f628956d5d0e9439c237193b7bd203613</citedby><cites>FETCH-LOGICAL-c499t-f16ec3f0f46dd3df5a9f80ef304cdff7f628956d5d0e9439c237193b7bd203613</cites><orcidid>0000-0002-2595-7939 ; 0000-0002-4666-1408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683800/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683800/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31428226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kaushik, Nagendra K.</contributor><contributor>Nagendra K Kaushik</contributor><creatorcontrib>Bogdanchikova, Nina</creatorcontrib><creatorcontrib>Toledano-Magaña, Yanis</creatorcontrib><creatorcontrib>Pestryakov, Alexey</creatorcontrib><creatorcontrib>Gómez, Claudia</creatorcontrib><creatorcontrib>Torres-Bugarín, Olivia</creatorcontrib><creatorcontrib>García-Ramos, Juan C.</creatorcontrib><creatorcontrib>Girón-Vázquez, Nayeli G.</creatorcontrib><creatorcontrib>Valenzuela-Salas, Lucía M.</creatorcontrib><creatorcontrib>Villarreal-Gómez, Luis J.</creatorcontrib><title>Antiproliferative and Antitumour Effect of Nongenotoxic Silver Nanoparticles on Melanoma Models</title><title>Oxidative medicine and cellular longevity</title><addtitle>Oxid Med Cell Longev</addtitle><description>During the last 3 decades, there has been a slow advance to obtain new treatments for malignant melanoma that improve patient survival. In this work, we present a systematic study focused on the antiproliferative and antitumour effect of AgNPs. These nanoparticles are fully characterized, are coated with polyvinylpyrrolidone (PVP), and have an average size of 35±15 nm and a metallic silver content of 1.2% wt. Main changes on cell viability, induction of apoptosis and necrosis, and ROS generation were found on B16-F10 cells after six hours of exposure to AgNPs (IC50=4.2 μg/mL) or Cisplatin (IC50=2.0 μg/mL). Despite the similar response for both AgNPs and Cisplatin on antiproliferative potency (cellular viability of 53.95±1.88 and 53.62±1.04) and ROS production (20.27±1.09% and 19.50±0.35%), significantly different cell death pathways were triggered. While AgNPs induce only apoptosis (45.98±1.88%), Cisplatin induces apoptosis and necrosis at the same rate (22.31±1.72% and 24.07±1.10%, respectively). In addition to their antiproliferative activity, in vivo experiments showed that treatments of 3, 6, and 12 mg/kg of AgNPs elicit a survival rate almost 4 times higher (P&lt;0.05) compared with the survival rate obtained with Cisplatin (2 mg/kg). Furthermore, the survivor mice treated with AgNPs do not show genotoxic damage determined by micronuclei frequency quantification on peripheral blood cells. These results exhibit the remarkable antitumour activity of a nongenotoxic AgNP formulation and constitute the first advance toward the application of these AgNPs for melanoma treatment, which could considerably reduce adverse effects provoked by currently applied chemotherapeutics.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Autophagy</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cisplatin</subject><subject>Cisplatin - therapeutic use</subject><subject>Cytotoxicity</subject><subject>DNA Damage - drug effects</subject><subject>Erythrocytes - cytology</subject><subject>Erythrocytes - drug effects</subject><subject>Erythrocytes - metabolism</subject><subject>Hematology</subject><subject>Iron</subject><subject>Kaplan-Meier Estimate</subject><subject>Male</subject><subject>Melanoma</subject><subject>Melanoma, Experimental - drug therapy</subject><subject>Melanoma, Experimental - mortality</subject><subject>Melanoma, Experimental - pathology</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - therapeutic use</subject><subject>Metal Nanoparticles - toxicity</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Povidone</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>Skin cancer</subject><subject>Toxicology</subject><issn>1942-0900</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkc1vEzEQxS0EoqVw44wscSyh44911hekqCofUlsOwNly7HHqatcO9ibAf4-jhBRunGY089PTm3mEvGTwlrGuu-DA9IXseM8le0ROmZZ8BlrLx8ce4IQ8q_UeQIkGPSUngsnGc3VKzCJNcV3yEAMWO8UtUps83U2nzZg3hV6FgG6iOdDbnFaY8pR_Rke_xGGLhd7alNe2TNENWGlO9AaHNhotvckeh_qcPAl2qPjiUM_It_dXXy8_zq4_f_h0ubieOan1NAtMoRMBglTeCx86q0MPGARI50OYB8V73SnfeUAthXZczJkWy_nScxCKiTPybq-73ixH9A7TVOxg1iWOtvwy2Ubz7ybFO7PKW6NUL3qAJvD6IFDy9w3Wydy361PzbNqjeq4YCP5AreyAJqaQm5gbY3VmoYAB73veNerNnnIl11owHH0wMLvQzC40cwit4a_-9n6E_6TUgPM9cBeTtz_if8phYzDYB3r3qnbqbzqHqWM</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Bogdanchikova, Nina</creator><creator>Toledano-Magaña, Yanis</creator><creator>Pestryakov, Alexey</creator><creator>Gómez, Claudia</creator><creator>Torres-Bugarín, Olivia</creator><creator>García-Ramos, Juan C.</creator><creator>Girón-Vázquez, Nayeli G.</creator><creator>Valenzuela-Salas, Lucía M.</creator><creator>Villarreal-Gómez, Luis J.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2595-7939</orcidid><orcidid>https://orcid.org/0000-0002-4666-1408</orcidid></search><sort><creationdate>2019</creationdate><title>Antiproliferative and Antitumour Effect of Nongenotoxic Silver Nanoparticles on Melanoma Models</title><author>Bogdanchikova, Nina ; Toledano-Magaña, Yanis ; Pestryakov, Alexey ; Gómez, Claudia ; Torres-Bugarín, Olivia ; García-Ramos, Juan C. ; Girón-Vázquez, Nayeli G. ; Valenzuela-Salas, Lucía M. ; Villarreal-Gómez, Luis J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-f16ec3f0f46dd3df5a9f80ef304cdff7f628956d5d0e9439c237193b7bd203613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Autophagy</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cisplatin</topic><topic>Cisplatin - therapeutic use</topic><topic>Cytotoxicity</topic><topic>DNA Damage - drug effects</topic><topic>Erythrocytes - cytology</topic><topic>Erythrocytes - drug effects</topic><topic>Erythrocytes - metabolism</topic><topic>Hematology</topic><topic>Iron</topic><topic>Kaplan-Meier Estimate</topic><topic>Male</topic><topic>Melanoma</topic><topic>Melanoma, Experimental - drug therapy</topic><topic>Melanoma, Experimental - mortality</topic><topic>Melanoma, Experimental - pathology</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - therapeutic use</topic><topic>Metal Nanoparticles - toxicity</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Povidone</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>Skin cancer</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogdanchikova, Nina</creatorcontrib><creatorcontrib>Toledano-Magaña, Yanis</creatorcontrib><creatorcontrib>Pestryakov, Alexey</creatorcontrib><creatorcontrib>Gómez, Claudia</creatorcontrib><creatorcontrib>Torres-Bugarín, Olivia</creatorcontrib><creatorcontrib>García-Ramos, Juan C.</creatorcontrib><creatorcontrib>Girón-Vázquez, Nayeli G.</creatorcontrib><creatorcontrib>Valenzuela-Salas, Lucía M.</creatorcontrib><creatorcontrib>Villarreal-Gómez, Luis J.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogdanchikova, Nina</au><au>Toledano-Magaña, Yanis</au><au>Pestryakov, Alexey</au><au>Gómez, Claudia</au><au>Torres-Bugarín, Olivia</au><au>García-Ramos, Juan C.</au><au>Girón-Vázquez, Nayeli G.</au><au>Valenzuela-Salas, Lucía M.</au><au>Villarreal-Gómez, Luis J.</au><au>Kaushik, Nagendra K.</au><au>Nagendra K Kaushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiproliferative and Antitumour Effect of Nongenotoxic Silver Nanoparticles on Melanoma Models</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><addtitle>Oxid Med Cell Longev</addtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1942-0900</issn><eissn>1942-0994</eissn><abstract>During the last 3 decades, there has been a slow advance to obtain new treatments for malignant melanoma that improve patient survival. In this work, we present a systematic study focused on the antiproliferative and antitumour effect of AgNPs. These nanoparticles are fully characterized, are coated with polyvinylpyrrolidone (PVP), and have an average size of 35±15 nm and a metallic silver content of 1.2% wt. Main changes on cell viability, induction of apoptosis and necrosis, and ROS generation were found on B16-F10 cells after six hours of exposure to AgNPs (IC50=4.2 μg/mL) or Cisplatin (IC50=2.0 μg/mL). Despite the similar response for both AgNPs and Cisplatin on antiproliferative potency (cellular viability of 53.95±1.88 and 53.62±1.04) and ROS production (20.27±1.09% and 19.50±0.35%), significantly different cell death pathways were triggered. While AgNPs induce only apoptosis (45.98±1.88%), Cisplatin induces apoptosis and necrosis at the same rate (22.31±1.72% and 24.07±1.10%, respectively). In addition to their antiproliferative activity, in vivo experiments showed that treatments of 3, 6, and 12 mg/kg of AgNPs elicit a survival rate almost 4 times higher (P&lt;0.05) compared with the survival rate obtained with Cisplatin (2 mg/kg). Furthermore, the survivor mice treated with AgNPs do not show genotoxic damage determined by micronuclei frequency quantification on peripheral blood cells. These results exhibit the remarkable antitumour activity of a nongenotoxic AgNP formulation and constitute the first advance toward the application of these AgNPs for melanoma treatment, which could considerably reduce adverse effects provoked by currently applied chemotherapeutics.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>31428226</pmid><doi>10.1155/2019/4528241</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2595-7939</orcidid><orcidid>https://orcid.org/0000-0002-4666-1408</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-0900
ispartof Oxidative medicine and cellular longevity, 2019, Vol.2019 (2019), p.1-12
issn 1942-0900
1942-0994
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6683800
source MEDLINE; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Animals
Apoptosis
Apoptosis - drug effects
Autophagy
Cancer
Cancer therapies
Care and treatment
Cell growth
Cell Line, Tumor
Cell Proliferation - drug effects
Cisplatin
Cisplatin - therapeutic use
Cytotoxicity
DNA Damage - drug effects
Erythrocytes - cytology
Erythrocytes - drug effects
Erythrocytes - metabolism
Hematology
Iron
Kaplan-Meier Estimate
Male
Melanoma
Melanoma, Experimental - drug therapy
Melanoma, Experimental - mortality
Melanoma, Experimental - pathology
Metal Nanoparticles - chemistry
Metal Nanoparticles - therapeutic use
Metal Nanoparticles - toxicity
Mice
Mice, Inbred C57BL
Nanomaterials
Nanoparticles
Povidone
Reactive Oxygen Species - metabolism
Silver
Silver - chemistry
Skin cancer
Toxicology
title Antiproliferative and Antitumour Effect of Nongenotoxic Silver Nanoparticles on Melanoma Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiproliferative%20and%20Antitumour%20Effect%20of%20Nongenotoxic%20Silver%20Nanoparticles%20on%20Melanoma%20Models&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=Bogdanchikova,%20Nina&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2019/4528241&rft_dat=%3Cgale_pubme%3EA601028825%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268261032&rft_id=info:pmid/31428226&rft_galeid=A601028825&rfr_iscdi=true