Stubbing out hypothetical bias: improving tobacco market predictions by combining stated and revealed preference data

•We combine SP with multiple sources of RP data in choice models.•We study the impact of a range of calibrations on predictions.•Model calibration itself makes a substantial impact on predictions.•How model calibration is conducted makes a substantial impact on predictions. In health, stated prefere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of health economics 2019-05, Vol.65, p.93-102
Hauptverfasser: Buckell, John, Hess, Stephane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue
container_start_page 93
container_title Journal of health economics
container_volume 65
creator Buckell, John
Hess, Stephane
description •We combine SP with multiple sources of RP data in choice models.•We study the impact of a range of calibrations on predictions.•Model calibration itself makes a substantial impact on predictions.•How model calibration is conducted makes a substantial impact on predictions. In health, stated preference data from discrete choice experiments (DCEs) are commonly used to estimate discrete choice models that are then used for forecasting behavioral change, often with the goal of informing policy decisions. Data from DCEs are potentially subject to hypothetical bias. In turn, forecasts may be biased, yielding substandard evidence for policymakers. Bias can enter both through the elasticities as well as through the model constants. Simple correction approaches exist (using revealed preference data) but are seemingly not widely used in health economics. We use DCE data from an experiment on smokers in the US. Real-world data are used to calibrate the scale of utility (in two ways) and the alternative-specific constants (ASCs); several innovations for calibration are proposed. We find that embedding revealed preference data in the model makes a substantial difference to the forecasts; and that how models are calibrated also makes a substantial difference.
doi_str_mv 10.1016/j.jhealeco.2019.03.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6682418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167629618306179</els_id><sourcerecordid>2210319332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-effc923dfe7991c33eaede92edc7d443f31fd64c71ff74a23c42121a82e730b63</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokPhL1SW2LBJ8GucmAUCVbykSiyAteXYNx2HJA62M9L8exxNWwEbvPHC3z0-9xyEriipKaHy9VAPBzAj2FAzQlVNeE0ofYR2tG1URaWQj9GugE0lmZIX6FlKAylnz9VTdMGJamUjmh1av-W16_x8i8Oa8eG0hHyA7K0ZcedNeoP9tMRw3IAcOmNtwJOJPyHjJYLzNvswJ9ydsA1Tkdm4lE0Gh83scITjZtJtcA8RZgvYmWyeoye9GRO8uLsv0Y-PH75ff65uvn76cv3-prJ7KXIFfW8V466HRilqOQcDDhQDZxsnBO857Z0UtqF93wjDuBWMMmpaBg0nneSX6O1Zd1m7qUzBnKMZ9RJ9WeKkg_H675fZH_RtOGopWyZoWwRe3QnE8GuFlPXkk4VxNDOENWnGKOFUcc4K-vIfdAhrnMt6hSqltHxPNkfyTNkYUiqpPJihRG_N6kHfN6u3ZjXhujRbBq_-XOVh7L7KArw7A1ACPXqIOlm_Je58BJu1C_5_f_wGvI-73A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287983506</pqid></control><display><type>article</type><title>Stubbing out hypothetical bias: improving tobacco market predictions by combining stated and revealed preference data</title><source>Elsevier ScienceDirect Journals Complete</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Buckell, John ; Hess, Stephane</creator><creatorcontrib>Buckell, John ; Hess, Stephane</creatorcontrib><description>•We combine SP with multiple sources of RP data in choice models.•We study the impact of a range of calibrations on predictions.•Model calibration itself makes a substantial impact on predictions.•How model calibration is conducted makes a substantial impact on predictions. In health, stated preference data from discrete choice experiments (DCEs) are commonly used to estimate discrete choice models that are then used for forecasting behavioral change, often with the goal of informing policy decisions. Data from DCEs are potentially subject to hypothetical bias. In turn, forecasts may be biased, yielding substandard evidence for policymakers. Bias can enter both through the elasticities as well as through the model constants. Simple correction approaches exist (using revealed preference data) but are seemingly not widely used in health economics. We use DCE data from an experiment on smokers in the US. Real-world data are used to calibrate the scale of utility (in two ways) and the alternative-specific constants (ASCs); several innovations for calibration are proposed. We find that embedding revealed preference data in the model makes a substantial difference to the forecasts; and that how models are calibrated also makes a substantial difference.</description><identifier>ISSN: 0167-6296</identifier><identifier>EISSN: 1879-1646</identifier><identifier>DOI: 10.1016/j.jhealeco.2019.03.011</identifier><identifier>PMID: 30986747</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Behavior change ; Bias ; Calibration ; Decision making models ; Discrete choice ; Discrete choice experiment ; Economic models ; Elasticity ; Embedding ; Forecasting ; Health economics ; Hypothetical bias ; Innovations ; Mathematical models ; Policy making ; Policy predictions ; Revealed preference ; Smoking ; Stated preference ; Substandard ; Tobacco</subject><ispartof>Journal of health economics, 2019-05, Vol.65, p.93-102</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier Sequoia S.A. May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-effc923dfe7991c33eaede92edc7d443f31fd64c71ff74a23c42121a82e730b63</citedby><cites>FETCH-LOGICAL-c564t-effc923dfe7991c33eaede92edc7d443f31fd64c71ff74a23c42121a82e730b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhealeco.2019.03.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,30999,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30986747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buckell, John</creatorcontrib><creatorcontrib>Hess, Stephane</creatorcontrib><title>Stubbing out hypothetical bias: improving tobacco market predictions by combining stated and revealed preference data</title><title>Journal of health economics</title><addtitle>J Health Econ</addtitle><description>•We combine SP with multiple sources of RP data in choice models.•We study the impact of a range of calibrations on predictions.•Model calibration itself makes a substantial impact on predictions.•How model calibration is conducted makes a substantial impact on predictions. In health, stated preference data from discrete choice experiments (DCEs) are commonly used to estimate discrete choice models that are then used for forecasting behavioral change, often with the goal of informing policy decisions. Data from DCEs are potentially subject to hypothetical bias. In turn, forecasts may be biased, yielding substandard evidence for policymakers. Bias can enter both through the elasticities as well as through the model constants. Simple correction approaches exist (using revealed preference data) but are seemingly not widely used in health economics. We use DCE data from an experiment on smokers in the US. Real-world data are used to calibrate the scale of utility (in two ways) and the alternative-specific constants (ASCs); several innovations for calibration are proposed. We find that embedding revealed preference data in the model makes a substantial difference to the forecasts; and that how models are calibrated also makes a substantial difference.</description><subject>Behavior change</subject><subject>Bias</subject><subject>Calibration</subject><subject>Decision making models</subject><subject>Discrete choice</subject><subject>Discrete choice experiment</subject><subject>Economic models</subject><subject>Elasticity</subject><subject>Embedding</subject><subject>Forecasting</subject><subject>Health economics</subject><subject>Hypothetical bias</subject><subject>Innovations</subject><subject>Mathematical models</subject><subject>Policy making</subject><subject>Policy predictions</subject><subject>Revealed preference</subject><subject>Smoking</subject><subject>Stated preference</subject><subject>Substandard</subject><subject>Tobacco</subject><issn>0167-6296</issn><issn>1879-1646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNqFkUtv1DAUhS0EokPhL1SW2LBJ8GucmAUCVbykSiyAteXYNx2HJA62M9L8exxNWwEbvPHC3z0-9xyEriipKaHy9VAPBzAj2FAzQlVNeE0ofYR2tG1URaWQj9GugE0lmZIX6FlKAylnz9VTdMGJamUjmh1av-W16_x8i8Oa8eG0hHyA7K0ZcedNeoP9tMRw3IAcOmNtwJOJPyHjJYLzNvswJ9ydsA1Tkdm4lE0Gh83scITjZtJtcA8RZgvYmWyeoye9GRO8uLsv0Y-PH75ff65uvn76cv3-prJ7KXIFfW8V466HRilqOQcDDhQDZxsnBO857Z0UtqF93wjDuBWMMmpaBg0nneSX6O1Zd1m7qUzBnKMZ9RJ9WeKkg_H675fZH_RtOGopWyZoWwRe3QnE8GuFlPXkk4VxNDOENWnGKOFUcc4K-vIfdAhrnMt6hSqltHxPNkfyTNkYUiqpPJihRG_N6kHfN6u3ZjXhujRbBq_-XOVh7L7KArw7A1ACPXqIOlm_Je58BJu1C_5_f_wGvI-73A</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Buckell, John</creator><creator>Hess, Stephane</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7T2</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190501</creationdate><title>Stubbing out hypothetical bias: improving tobacco market predictions by combining stated and revealed preference data</title><author>Buckell, John ; Hess, Stephane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-effc923dfe7991c33eaede92edc7d443f31fd64c71ff74a23c42121a82e730b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Behavior change</topic><topic>Bias</topic><topic>Calibration</topic><topic>Decision making models</topic><topic>Discrete choice</topic><topic>Discrete choice experiment</topic><topic>Economic models</topic><topic>Elasticity</topic><topic>Embedding</topic><topic>Forecasting</topic><topic>Health economics</topic><topic>Hypothetical bias</topic><topic>Innovations</topic><topic>Mathematical models</topic><topic>Policy making</topic><topic>Policy predictions</topic><topic>Revealed preference</topic><topic>Smoking</topic><topic>Stated preference</topic><topic>Substandard</topic><topic>Tobacco</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buckell, John</creatorcontrib><creatorcontrib>Hess, Stephane</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of health economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buckell, John</au><au>Hess, Stephane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stubbing out hypothetical bias: improving tobacco market predictions by combining stated and revealed preference data</atitle><jtitle>Journal of health economics</jtitle><addtitle>J Health Econ</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>65</volume><spage>93</spage><epage>102</epage><pages>93-102</pages><issn>0167-6296</issn><eissn>1879-1646</eissn><abstract>•We combine SP with multiple sources of RP data in choice models.•We study the impact of a range of calibrations on predictions.•Model calibration itself makes a substantial impact on predictions.•How model calibration is conducted makes a substantial impact on predictions. In health, stated preference data from discrete choice experiments (DCEs) are commonly used to estimate discrete choice models that are then used for forecasting behavioral change, often with the goal of informing policy decisions. Data from DCEs are potentially subject to hypothetical bias. In turn, forecasts may be biased, yielding substandard evidence for policymakers. Bias can enter both through the elasticities as well as through the model constants. Simple correction approaches exist (using revealed preference data) but are seemingly not widely used in health economics. We use DCE data from an experiment on smokers in the US. Real-world data are used to calibrate the scale of utility (in two ways) and the alternative-specific constants (ASCs); several innovations for calibration are proposed. We find that embedding revealed preference data in the model makes a substantial difference to the forecasts; and that how models are calibrated also makes a substantial difference.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30986747</pmid><doi>10.1016/j.jhealeco.2019.03.011</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6296
ispartof Journal of health economics, 2019-05, Vol.65, p.93-102
issn 0167-6296
1879-1646
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6682418
source Elsevier ScienceDirect Journals Complete; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Behavior change
Bias
Calibration
Decision making models
Discrete choice
Discrete choice experiment
Economic models
Elasticity
Embedding
Forecasting
Health economics
Hypothetical bias
Innovations
Mathematical models
Policy making
Policy predictions
Revealed preference
Smoking
Stated preference
Substandard
Tobacco
title Stubbing out hypothetical bias: improving tobacco market predictions by combining stated and revealed preference data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stubbing%20out%20hypothetical%20bias:%20improving%20tobacco%20market%20predictions%20by%20combining%20stated%20and%20revealed%20preference%20data&rft.jtitle=Journal%20of%20health%20economics&rft.au=Buckell,%20John&rft.date=2019-05-01&rft.volume=65&rft.spage=93&rft.epage=102&rft.pages=93-102&rft.issn=0167-6296&rft.eissn=1879-1646&rft_id=info:doi/10.1016/j.jhealeco.2019.03.011&rft_dat=%3Cproquest_pubme%3E2210319332%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287983506&rft_id=info:pmid/30986747&rft_els_id=S0167629618306179&rfr_iscdi=true