Functional divergence caused by mutations in an energetic hotspot in ERK2

The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-07, Vol.116 (31), p.15514-15523
Hauptverfasser: Taylor, Clinton A., Cormier, Kevin W., Keenan, Shannon E., Earnest, Svetlana, Stippec, Steve, Wichaidit, Chonlarat, Juang, Yu-Chi, Wang, Junmei, Shvartsman, Stanislav Y., Goldsmith, Elizabeth J., Cobb, Melanie H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15523
container_issue 31
container_start_page 15514
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Taylor, Clinton A.
Cormier, Kevin W.
Keenan, Shannon E.
Earnest, Svetlana
Stippec, Steve
Wichaidit, Chonlarat
Juang, Yu-Chi
Wang, Junmei
Shvartsman, Stanislav Y.
Goldsmith, Elizabeth J.
Cobb, Melanie H.
description The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.
doi_str_mv 10.1073/pnas.1905015116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6681740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26848148</jstor_id><sourcerecordid>26848148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-427d90ab450a1b591b5476ce777f97fe71949d6b84b2b3b6140bfdff2ab7b9583</originalsourceid><addsrcrecordid>eNpdkc9rFDEcxYModq2ePSmDXrxM-00mkx-XgpRWi4VC0XNIMplultlkTTKF_vdm2LraHkIg75P3vslD6D2GEwy8O90FnU-whB5wjzF7gVYYJG4ZlfASrQAIbwUl9Ai9yXkDALIX8BoddZhI1jOyQleXc7DFx6CnZvD3Lt25YF1j9Zzd0JiHZjsXvei58aHRoXFhYYq3zTqWvItlOb-4_UHeolejnrJ797gfo1-XFz_Pv7fXN9-uzr9et5ZyKC0lfJCgDe1BY9PLuihn1nHOR8lHx7GkcmBGUENMZximYMZhHIk23NTxu2N0tvfdzWbrButCSXpSu-S3Oj2oqL16qgS_VnfxXjEmMKdQDT7tDWIuXmXri7NrG0Nwtijc1wjMK_TlMSXF37PLRW19tm6adHBxzoqQnnPooJcV_fwM3cQ51Q9dKCYYF0Isqad7yqaYc3LjYWIMaulSLV2qf13WGx__f-iB_1teBT7sgU0uMR30mkkFpqL7A8c0o7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268678880</pqid></control><display><type>article</type><title>Functional divergence caused by mutations in an energetic hotspot in ERK2</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Taylor, Clinton A. ; Cormier, Kevin W. ; Keenan, Shannon E. ; Earnest, Svetlana ; Stippec, Steve ; Wichaidit, Chonlarat ; Juang, Yu-Chi ; Wang, Junmei ; Shvartsman, Stanislav Y. ; Goldsmith, Elizabeth J. ; Cobb, Melanie H.</creator><creatorcontrib>Taylor, Clinton A. ; Cormier, Kevin W. ; Keenan, Shannon E. ; Earnest, Svetlana ; Stippec, Steve ; Wichaidit, Chonlarat ; Juang, Yu-Chi ; Wang, Junmei ; Shvartsman, Stanislav Y. ; Goldsmith, Elizabeth J. ; Cobb, Melanie H. ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1905015116</identifier><identifier>PMID: 31296562</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Animals, Genetically Modified ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; Crystal structure ; Crystallography, X-Ray ; Deactivation ; Displays ; Divergence ; Docking ; Drosophila melanogaster - enzymology ; Drosophila melanogaster - genetics ; Drosophila Proteins - chemistry ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Enzyme Activation ; Enzyme Stability ; ERK CD site ; Extracellular signal-regulated kinase ; Extracellular Signal-Regulated MAP Kinases - chemistry ; Extracellular Signal-Regulated MAP Kinases - genetics ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Fruit flies ; Humans ; Inactivation ; Inhibitors ; kinase ; Kinases ; Models, Molecular ; Mutant Proteins - metabolism ; Mutation ; Mutation - genetics ; Phenotypes ; Phosphorylation ; PNAS Plus ; Proteins ; stability ; Substrate inhibition ; Thermal stability</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-07, Vol.116 (31), p.15514-15523</ispartof><rights>Copyright National Academy of Sciences Jul 30, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-427d90ab450a1b591b5476ce777f97fe71949d6b84b2b3b6140bfdff2ab7b9583</citedby><cites>FETCH-LOGICAL-c470t-427d90ab450a1b591b5476ce777f97fe71949d6b84b2b3b6140bfdff2ab7b9583</cites><orcidid>0000-0003-0833-5473 ; 0000-0002-8283-3393 ; 0000000282833393 ; 0000000308335473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26848148$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26848148$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31296562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1558317$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Clinton A.</creatorcontrib><creatorcontrib>Cormier, Kevin W.</creatorcontrib><creatorcontrib>Keenan, Shannon E.</creatorcontrib><creatorcontrib>Earnest, Svetlana</creatorcontrib><creatorcontrib>Stippec, Steve</creatorcontrib><creatorcontrib>Wichaidit, Chonlarat</creatorcontrib><creatorcontrib>Juang, Yu-Chi</creatorcontrib><creatorcontrib>Wang, Junmei</creatorcontrib><creatorcontrib>Shvartsman, Stanislav Y.</creatorcontrib><creatorcontrib>Goldsmith, Elizabeth J.</creatorcontrib><creatorcontrib>Cobb, Melanie H.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Functional divergence caused by mutations in an energetic hotspot in ERK2</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Deactivation</subject><subject>Displays</subject><subject>Divergence</subject><subject>Docking</subject><subject>Drosophila melanogaster - enzymology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - chemistry</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Enzyme Activation</subject><subject>Enzyme Stability</subject><subject>ERK CD site</subject><subject>Extracellular signal-regulated kinase</subject><subject>Extracellular Signal-Regulated MAP Kinases - chemistry</subject><subject>Extracellular Signal-Regulated MAP Kinases - genetics</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Fruit flies</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Inhibitors</subject><subject>kinase</subject><subject>Kinases</subject><subject>Models, Molecular</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>stability</subject><subject>Substrate inhibition</subject><subject>Thermal stability</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9rFDEcxYModq2ePSmDXrxM-00mkx-XgpRWi4VC0XNIMplultlkTTKF_vdm2LraHkIg75P3vslD6D2GEwy8O90FnU-whB5wjzF7gVYYJG4ZlfASrQAIbwUl9Ai9yXkDALIX8BoddZhI1jOyQleXc7DFx6CnZvD3Lt25YF1j9Zzd0JiHZjsXvei58aHRoXFhYYq3zTqWvItlOb-4_UHeolejnrJ797gfo1-XFz_Pv7fXN9-uzr9et5ZyKC0lfJCgDe1BY9PLuihn1nHOR8lHx7GkcmBGUENMZximYMZhHIk23NTxu2N0tvfdzWbrButCSXpSu-S3Oj2oqL16qgS_VnfxXjEmMKdQDT7tDWIuXmXri7NrG0Nwtijc1wjMK_TlMSXF37PLRW19tm6adHBxzoqQnnPooJcV_fwM3cQ51Q9dKCYYF0Isqad7yqaYc3LjYWIMaulSLV2qf13WGx__f-iB_1teBT7sgU0uMR30mkkFpqL7A8c0o7A</recordid><startdate>20190730</startdate><enddate>20190730</enddate><creator>Taylor, Clinton A.</creator><creator>Cormier, Kevin W.</creator><creator>Keenan, Shannon E.</creator><creator>Earnest, Svetlana</creator><creator>Stippec, Steve</creator><creator>Wichaidit, Chonlarat</creator><creator>Juang, Yu-Chi</creator><creator>Wang, Junmei</creator><creator>Shvartsman, Stanislav Y.</creator><creator>Goldsmith, Elizabeth J.</creator><creator>Cobb, Melanie H.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0833-5473</orcidid><orcidid>https://orcid.org/0000-0002-8283-3393</orcidid><orcidid>https://orcid.org/0000000282833393</orcidid><orcidid>https://orcid.org/0000000308335473</orcidid></search><sort><creationdate>20190730</creationdate><title>Functional divergence caused by mutations in an energetic hotspot in ERK2</title><author>Taylor, Clinton A. ; Cormier, Kevin W. ; Keenan, Shannon E. ; Earnest, Svetlana ; Stippec, Steve ; Wichaidit, Chonlarat ; Juang, Yu-Chi ; Wang, Junmei ; Shvartsman, Stanislav Y. ; Goldsmith, Elizabeth J. ; Cobb, Melanie H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-427d90ab450a1b591b5476ce777f97fe71949d6b84b2b3b6140bfdff2ab7b9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Deactivation</topic><topic>Displays</topic><topic>Divergence</topic><topic>Docking</topic><topic>Drosophila melanogaster - enzymology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - chemistry</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Enzyme Activation</topic><topic>Enzyme Stability</topic><topic>ERK CD site</topic><topic>Extracellular signal-regulated kinase</topic><topic>Extracellular Signal-Regulated MAP Kinases - chemistry</topic><topic>Extracellular Signal-Regulated MAP Kinases - genetics</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Fruit flies</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Inhibitors</topic><topic>kinase</topic><topic>Kinases</topic><topic>Models, Molecular</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>stability</topic><topic>Substrate inhibition</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Clinton A.</creatorcontrib><creatorcontrib>Cormier, Kevin W.</creatorcontrib><creatorcontrib>Keenan, Shannon E.</creatorcontrib><creatorcontrib>Earnest, Svetlana</creatorcontrib><creatorcontrib>Stippec, Steve</creatorcontrib><creatorcontrib>Wichaidit, Chonlarat</creatorcontrib><creatorcontrib>Juang, Yu-Chi</creatorcontrib><creatorcontrib>Wang, Junmei</creatorcontrib><creatorcontrib>Shvartsman, Stanislav Y.</creatorcontrib><creatorcontrib>Goldsmith, Elizabeth J.</creatorcontrib><creatorcontrib>Cobb, Melanie H.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Clinton A.</au><au>Cormier, Kevin W.</au><au>Keenan, Shannon E.</au><au>Earnest, Svetlana</au><au>Stippec, Steve</au><au>Wichaidit, Chonlarat</au><au>Juang, Yu-Chi</au><au>Wang, Junmei</au><au>Shvartsman, Stanislav Y.</au><au>Goldsmith, Elizabeth J.</au><au>Cobb, Melanie H.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional divergence caused by mutations in an energetic hotspot in ERK2</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-07-30</date><risdate>2019</risdate><volume>116</volume><issue>31</issue><spage>15514</spage><epage>15523</epage><pages>15514-15523</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31296562</pmid><doi>10.1073/pnas.1905015116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0833-5473</orcidid><orcidid>https://orcid.org/0000-0002-8283-3393</orcidid><orcidid>https://orcid.org/0000000282833393</orcidid><orcidid>https://orcid.org/0000000308335473</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-07, Vol.116 (31), p.15514-15523
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6681740
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Animals, Genetically Modified
BASIC BIOLOGICAL SCIENCES
Biological Sciences
Crystal structure
Crystallography, X-Ray
Deactivation
Displays
Divergence
Docking
Drosophila melanogaster - enzymology
Drosophila melanogaster - genetics
Drosophila Proteins - chemistry
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Enzyme Activation
Enzyme Stability
ERK CD site
Extracellular signal-regulated kinase
Extracellular Signal-Regulated MAP Kinases - chemistry
Extracellular Signal-Regulated MAP Kinases - genetics
Extracellular Signal-Regulated MAP Kinases - metabolism
Fruit flies
Humans
Inactivation
Inhibitors
kinase
Kinases
Models, Molecular
Mutant Proteins - metabolism
Mutation
Mutation - genetics
Phenotypes
Phosphorylation
PNAS Plus
Proteins
stability
Substrate inhibition
Thermal stability
title Functional divergence caused by mutations in an energetic hotspot in ERK2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20divergence%20caused%20by%20mutations%20in%20an%20energetic%20hotspot%20in%20ERK2&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Taylor,%20Clinton%20A.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-07-30&rft.volume=116&rft.issue=31&rft.spage=15514&rft.epage=15523&rft.pages=15514-15523&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1905015116&rft_dat=%3Cjstor_pubme%3E26848148%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268678880&rft_id=info:pmid/31296562&rft_jstor_id=26848148&rfr_iscdi=true