Functional divergence caused by mutations in an energetic hotspot in ERK2
The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associate...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-07, Vol.116 (31), p.15514-15523 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15523 |
---|---|
container_issue | 31 |
container_start_page | 15514 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Taylor, Clinton A. Cormier, Kevin W. Keenan, Shannon E. Earnest, Svetlana Stippec, Steve Wichaidit, Chonlarat Juang, Yu-Chi Wang, Junmei Shvartsman, Stanislav Y. Goldsmith, Elizabeth J. Cobb, Melanie H. |
description | The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions. |
doi_str_mv | 10.1073/pnas.1905015116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6681740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26848148</jstor_id><sourcerecordid>26848148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-427d90ab450a1b591b5476ce777f97fe71949d6b84b2b3b6140bfdff2ab7b9583</originalsourceid><addsrcrecordid>eNpdkc9rFDEcxYModq2ePSmDXrxM-00mkx-XgpRWi4VC0XNIMplultlkTTKF_vdm2LraHkIg75P3vslD6D2GEwy8O90FnU-whB5wjzF7gVYYJG4ZlfASrQAIbwUl9Ai9yXkDALIX8BoddZhI1jOyQleXc7DFx6CnZvD3Lt25YF1j9Zzd0JiHZjsXvei58aHRoXFhYYq3zTqWvItlOb-4_UHeolejnrJ797gfo1-XFz_Pv7fXN9-uzr9et5ZyKC0lfJCgDe1BY9PLuihn1nHOR8lHx7GkcmBGUENMZximYMZhHIk23NTxu2N0tvfdzWbrButCSXpSu-S3Oj2oqL16qgS_VnfxXjEmMKdQDT7tDWIuXmXri7NrG0Nwtijc1wjMK_TlMSXF37PLRW19tm6adHBxzoqQnnPooJcV_fwM3cQ51Q9dKCYYF0Isqad7yqaYc3LjYWIMaulSLV2qf13WGx__f-iB_1teBT7sgU0uMR30mkkFpqL7A8c0o7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268678880</pqid></control><display><type>article</type><title>Functional divergence caused by mutations in an energetic hotspot in ERK2</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Taylor, Clinton A. ; Cormier, Kevin W. ; Keenan, Shannon E. ; Earnest, Svetlana ; Stippec, Steve ; Wichaidit, Chonlarat ; Juang, Yu-Chi ; Wang, Junmei ; Shvartsman, Stanislav Y. ; Goldsmith, Elizabeth J. ; Cobb, Melanie H.</creator><creatorcontrib>Taylor, Clinton A. ; Cormier, Kevin W. ; Keenan, Shannon E. ; Earnest, Svetlana ; Stippec, Steve ; Wichaidit, Chonlarat ; Juang, Yu-Chi ; Wang, Junmei ; Shvartsman, Stanislav Y. ; Goldsmith, Elizabeth J. ; Cobb, Melanie H. ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1905015116</identifier><identifier>PMID: 31296562</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Animals, Genetically Modified ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; Crystal structure ; Crystallography, X-Ray ; Deactivation ; Displays ; Divergence ; Docking ; Drosophila melanogaster - enzymology ; Drosophila melanogaster - genetics ; Drosophila Proteins - chemistry ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Enzyme Activation ; Enzyme Stability ; ERK CD site ; Extracellular signal-regulated kinase ; Extracellular Signal-Regulated MAP Kinases - chemistry ; Extracellular Signal-Regulated MAP Kinases - genetics ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Fruit flies ; Humans ; Inactivation ; Inhibitors ; kinase ; Kinases ; Models, Molecular ; Mutant Proteins - metabolism ; Mutation ; Mutation - genetics ; Phenotypes ; Phosphorylation ; PNAS Plus ; Proteins ; stability ; Substrate inhibition ; Thermal stability</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-07, Vol.116 (31), p.15514-15523</ispartof><rights>Copyright National Academy of Sciences Jul 30, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-427d90ab450a1b591b5476ce777f97fe71949d6b84b2b3b6140bfdff2ab7b9583</citedby><cites>FETCH-LOGICAL-c470t-427d90ab450a1b591b5476ce777f97fe71949d6b84b2b3b6140bfdff2ab7b9583</cites><orcidid>0000-0003-0833-5473 ; 0000-0002-8283-3393 ; 0000000282833393 ; 0000000308335473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26848148$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26848148$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31296562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1558317$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Clinton A.</creatorcontrib><creatorcontrib>Cormier, Kevin W.</creatorcontrib><creatorcontrib>Keenan, Shannon E.</creatorcontrib><creatorcontrib>Earnest, Svetlana</creatorcontrib><creatorcontrib>Stippec, Steve</creatorcontrib><creatorcontrib>Wichaidit, Chonlarat</creatorcontrib><creatorcontrib>Juang, Yu-Chi</creatorcontrib><creatorcontrib>Wang, Junmei</creatorcontrib><creatorcontrib>Shvartsman, Stanislav Y.</creatorcontrib><creatorcontrib>Goldsmith, Elizabeth J.</creatorcontrib><creatorcontrib>Cobb, Melanie H.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Functional divergence caused by mutations in an energetic hotspot in ERK2</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Deactivation</subject><subject>Displays</subject><subject>Divergence</subject><subject>Docking</subject><subject>Drosophila melanogaster - enzymology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - chemistry</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Enzyme Activation</subject><subject>Enzyme Stability</subject><subject>ERK CD site</subject><subject>Extracellular signal-regulated kinase</subject><subject>Extracellular Signal-Regulated MAP Kinases - chemistry</subject><subject>Extracellular Signal-Regulated MAP Kinases - genetics</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Fruit flies</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Inhibitors</subject><subject>kinase</subject><subject>Kinases</subject><subject>Models, Molecular</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>stability</subject><subject>Substrate inhibition</subject><subject>Thermal stability</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9rFDEcxYModq2ePSmDXrxM-00mkx-XgpRWi4VC0XNIMplultlkTTKF_vdm2LraHkIg75P3vslD6D2GEwy8O90FnU-whB5wjzF7gVYYJG4ZlfASrQAIbwUl9Ai9yXkDALIX8BoddZhI1jOyQleXc7DFx6CnZvD3Lt25YF1j9Zzd0JiHZjsXvei58aHRoXFhYYq3zTqWvItlOb-4_UHeolejnrJ797gfo1-XFz_Pv7fXN9-uzr9et5ZyKC0lfJCgDe1BY9PLuihn1nHOR8lHx7GkcmBGUENMZximYMZhHIk23NTxu2N0tvfdzWbrButCSXpSu-S3Oj2oqL16qgS_VnfxXjEmMKdQDT7tDWIuXmXri7NrG0Nwtijc1wjMK_TlMSXF37PLRW19tm6adHBxzoqQnnPooJcV_fwM3cQ51Q9dKCYYF0Isqad7yqaYc3LjYWIMaulSLV2qf13WGx__f-iB_1teBT7sgU0uMR30mkkFpqL7A8c0o7A</recordid><startdate>20190730</startdate><enddate>20190730</enddate><creator>Taylor, Clinton A.</creator><creator>Cormier, Kevin W.</creator><creator>Keenan, Shannon E.</creator><creator>Earnest, Svetlana</creator><creator>Stippec, Steve</creator><creator>Wichaidit, Chonlarat</creator><creator>Juang, Yu-Chi</creator><creator>Wang, Junmei</creator><creator>Shvartsman, Stanislav Y.</creator><creator>Goldsmith, Elizabeth J.</creator><creator>Cobb, Melanie H.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0833-5473</orcidid><orcidid>https://orcid.org/0000-0002-8283-3393</orcidid><orcidid>https://orcid.org/0000000282833393</orcidid><orcidid>https://orcid.org/0000000308335473</orcidid></search><sort><creationdate>20190730</creationdate><title>Functional divergence caused by mutations in an energetic hotspot in ERK2</title><author>Taylor, Clinton A. ; Cormier, Kevin W. ; Keenan, Shannon E. ; Earnest, Svetlana ; Stippec, Steve ; Wichaidit, Chonlarat ; Juang, Yu-Chi ; Wang, Junmei ; Shvartsman, Stanislav Y. ; Goldsmith, Elizabeth J. ; Cobb, Melanie H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-427d90ab450a1b591b5476ce777f97fe71949d6b84b2b3b6140bfdff2ab7b9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Deactivation</topic><topic>Displays</topic><topic>Divergence</topic><topic>Docking</topic><topic>Drosophila melanogaster - enzymology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - chemistry</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Enzyme Activation</topic><topic>Enzyme Stability</topic><topic>ERK CD site</topic><topic>Extracellular signal-regulated kinase</topic><topic>Extracellular Signal-Regulated MAP Kinases - chemistry</topic><topic>Extracellular Signal-Regulated MAP Kinases - genetics</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Fruit flies</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Inhibitors</topic><topic>kinase</topic><topic>Kinases</topic><topic>Models, Molecular</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>stability</topic><topic>Substrate inhibition</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Clinton A.</creatorcontrib><creatorcontrib>Cormier, Kevin W.</creatorcontrib><creatorcontrib>Keenan, Shannon E.</creatorcontrib><creatorcontrib>Earnest, Svetlana</creatorcontrib><creatorcontrib>Stippec, Steve</creatorcontrib><creatorcontrib>Wichaidit, Chonlarat</creatorcontrib><creatorcontrib>Juang, Yu-Chi</creatorcontrib><creatorcontrib>Wang, Junmei</creatorcontrib><creatorcontrib>Shvartsman, Stanislav Y.</creatorcontrib><creatorcontrib>Goldsmith, Elizabeth J.</creatorcontrib><creatorcontrib>Cobb, Melanie H.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Clinton A.</au><au>Cormier, Kevin W.</au><au>Keenan, Shannon E.</au><au>Earnest, Svetlana</au><au>Stippec, Steve</au><au>Wichaidit, Chonlarat</au><au>Juang, Yu-Chi</au><au>Wang, Junmei</au><au>Shvartsman, Stanislav Y.</au><au>Goldsmith, Elizabeth J.</au><au>Cobb, Melanie H.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional divergence caused by mutations in an energetic hotspot in ERK2</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-07-30</date><risdate>2019</risdate><volume>116</volume><issue>31</issue><spage>15514</spage><epage>15523</epage><pages>15514-15523</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31296562</pmid><doi>10.1073/pnas.1905015116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0833-5473</orcidid><orcidid>https://orcid.org/0000-0002-8283-3393</orcidid><orcidid>https://orcid.org/0000000282833393</orcidid><orcidid>https://orcid.org/0000000308335473</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-07, Vol.116 (31), p.15514-15523 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6681740 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Animals, Genetically Modified BASIC BIOLOGICAL SCIENCES Biological Sciences Crystal structure Crystallography, X-Ray Deactivation Displays Divergence Docking Drosophila melanogaster - enzymology Drosophila melanogaster - genetics Drosophila Proteins - chemistry Drosophila Proteins - genetics Drosophila Proteins - metabolism Enzyme Activation Enzyme Stability ERK CD site Extracellular signal-regulated kinase Extracellular Signal-Regulated MAP Kinases - chemistry Extracellular Signal-Regulated MAP Kinases - genetics Extracellular Signal-Regulated MAP Kinases - metabolism Fruit flies Humans Inactivation Inhibitors kinase Kinases Models, Molecular Mutant Proteins - metabolism Mutation Mutation - genetics Phenotypes Phosphorylation PNAS Plus Proteins stability Substrate inhibition Thermal stability |
title | Functional divergence caused by mutations in an energetic hotspot in ERK2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20divergence%20caused%20by%20mutations%20in%20an%20energetic%20hotspot%20in%20ERK2&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Taylor,%20Clinton%20A.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-07-30&rft.volume=116&rft.issue=31&rft.spage=15514&rft.epage=15523&rft.pages=15514-15523&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1905015116&rft_dat=%3Cjstor_pubme%3E26848148%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268678880&rft_id=info:pmid/31296562&rft_jstor_id=26848148&rfr_iscdi=true |