HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition
DNA damage triggers diverse cancers, particularly hepatocellular carcinoma (HCC), but the intrinsic link between DNA damage and tumorigenesis remains unclear. Because of its role as an epigenetic and transcriptional regulator, histone deacetylase 3 (HDAC3) is essential for DNA damage control and is...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2019-07, Vol.79 (14), p.3676-3688 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3688 |
---|---|
container_issue | 14 |
container_start_page | 3676 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 79 |
creator | Ji, Hongjie Zhou, Yongjie Zhuang, Xiang Zhu, Yongjie Wu, Zhenru Lu, Yannrong Li, Shengfu Zeng, Yong Lu, Qing R Huo, Yanying Shi, Yujun Bu, Hong |
description | DNA damage triggers diverse cancers, particularly hepatocellular carcinoma (HCC), but the intrinsic link between DNA damage and tumorigenesis remains unclear. Because of its role as an epigenetic and transcriptional regulator, histone deacetylase 3 (HDAC3) is essential for DNA damage control and is often aberrantly expressed in human HCC. In this study, we used individual class I HDAC member-deficient mice to demonstrate that K9 in histone H3 (H3K9), which is the critical site for the assembly of DNA damage response complexes, is exclusively targeted by HDAC3. Ablation of HDAC3 disrupted the deacetylation and consequent trimethylation of H3K9 (H3K9me3), the first step in double-strand break repair, and led to the accumulation of damaged DNA. Simultaneously, hyperacetylated H3K9 (H3K9ac) served as a transcriptional activator and enhanced multiple signaling pathways to promote tumorigenesis. Together, these results show that HDAC3 targets the H3K9ac/H3K9me3 transition to serve as a critical regulator that controls both DNA damage repair and the transcription of many tumor-related genes. Moreover, these findings provide novel insights into the link between DNA damage and transcriptional reprogramming in tumorigenesis. SIGNIFICANCE: These findings show that HDAC3 exclusively regulates H3K9ac in response to DNA damage, and loss of HDAC3 activity shifts the balance from DNA damage control to protumorigenic transcriptional activity. |
doi_str_mv | 10.1158/0008-5472.can-18-3767 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232077708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-232150f0b71e62c61f9ce57e17bead74a5b7c1c544cbd1852e5565e8ef1b8f363</originalsourceid><addsrcrecordid>eNpVUdFOwjAUbYxGEP0EzR59GbTrunYvJmSoGIn6gM9NV-6ghrXYDhL-3i0g0aeTm3vuuSfnIHRL8JAQJkYYYxGzlCdDrWxMREx5xs9QnzAqYp6m7Bz1T5weugrhqx0ZwewS9SjBOU951kfz6WRc0GgCldEGrN5HH97VroEQzcwOfFQoq1toVt5tl6tIdVTQTWRsNKWvudKjDmqg0dwrG0xjnL1GF5VaB7g54gB9Pj3Oi2k8e39-KcazWLMkb-KEJoThCpecQJbojFS5BsaB8BLUgqeKlVwTzdJUlwsiWAKMZQwEVKQUFc3oAD0cdDfbsoaFBtt4tZYbb2rl99IpI_9vrFnJpdvJLON5TkUrcH8U8O57C6GRtQka1mtlwW2DTFqLmHOOOyo7ULV3IXioTm8Ill0jsktbdmnLYvwmiZBdI-3d3V-Pp6vfCugPKzyGyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232077708</pqid></control><display><type>article</type><title>HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ji, Hongjie ; Zhou, Yongjie ; Zhuang, Xiang ; Zhu, Yongjie ; Wu, Zhenru ; Lu, Yannrong ; Li, Shengfu ; Zeng, Yong ; Lu, Qing R ; Huo, Yanying ; Shi, Yujun ; Bu, Hong</creator><creatorcontrib>Ji, Hongjie ; Zhou, Yongjie ; Zhuang, Xiang ; Zhu, Yongjie ; Wu, Zhenru ; Lu, Yannrong ; Li, Shengfu ; Zeng, Yong ; Lu, Qing R ; Huo, Yanying ; Shi, Yujun ; Bu, Hong</creatorcontrib><description>DNA damage triggers diverse cancers, particularly hepatocellular carcinoma (HCC), but the intrinsic link between DNA damage and tumorigenesis remains unclear. Because of its role as an epigenetic and transcriptional regulator, histone deacetylase 3 (HDAC3) is essential for DNA damage control and is often aberrantly expressed in human HCC. In this study, we used individual class I HDAC member-deficient mice to demonstrate that K9 in histone H3 (H3K9), which is the critical site for the assembly of DNA damage response complexes, is exclusively targeted by HDAC3. Ablation of HDAC3 disrupted the deacetylation and consequent trimethylation of H3K9 (H3K9me3), the first step in double-strand break repair, and led to the accumulation of damaged DNA. Simultaneously, hyperacetylated H3K9 (H3K9ac) served as a transcriptional activator and enhanced multiple signaling pathways to promote tumorigenesis. Together, these results show that HDAC3 targets the H3K9ac/H3K9me3 transition to serve as a critical regulator that controls both DNA damage repair and the transcription of many tumor-related genes. Moreover, these findings provide novel insights into the link between DNA damage and transcriptional reprogramming in tumorigenesis. SIGNIFICANCE: These findings show that HDAC3 exclusively regulates H3K9ac in response to DNA damage, and loss of HDAC3 activity shifts the balance from DNA damage control to protumorigenic transcriptional activity.</description><identifier>ISSN: 0008-5472</identifier><identifier>ISSN: 1538-7445</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-18-3767</identifier><identifier>PMID: 31097476</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Carcinoma, Hepatocellular - enzymology ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - metabolism ; Cellular Reprogramming - physiology ; DNA Damage ; DNA Repair ; Histone Deacetylases - deficiency ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Histones - genetics ; Histones - metabolism ; Humans ; Liver Neoplasms - enzymology ; Liver Neoplasms - genetics ; Liver Neoplasms - metabolism ; Liver Neoplasms, Experimental - enzymology ; Liver Neoplasms, Experimental - genetics ; Liver Neoplasms, Experimental - metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Transcription, Genetic ; Transcriptome</subject><ispartof>Cancer research (Chicago, Ill.), 2019-07, Vol.79 (14), p.3676-3688</ispartof><rights>2019 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-232150f0b71e62c61f9ce57e17bead74a5b7c1c544cbd1852e5565e8ef1b8f363</citedby><cites>FETCH-LOGICAL-c529t-232150f0b71e62c61f9ce57e17bead74a5b7c1c544cbd1852e5565e8ef1b8f363</cites><orcidid>0000-0003-0494-6023 ; 0000-0001-6846-9014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,3357,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31097476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Hongjie</creatorcontrib><creatorcontrib>Zhou, Yongjie</creatorcontrib><creatorcontrib>Zhuang, Xiang</creatorcontrib><creatorcontrib>Zhu, Yongjie</creatorcontrib><creatorcontrib>Wu, Zhenru</creatorcontrib><creatorcontrib>Lu, Yannrong</creatorcontrib><creatorcontrib>Li, Shengfu</creatorcontrib><creatorcontrib>Zeng, Yong</creatorcontrib><creatorcontrib>Lu, Qing R</creatorcontrib><creatorcontrib>Huo, Yanying</creatorcontrib><creatorcontrib>Shi, Yujun</creatorcontrib><creatorcontrib>Bu, Hong</creatorcontrib><title>HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>DNA damage triggers diverse cancers, particularly hepatocellular carcinoma (HCC), but the intrinsic link between DNA damage and tumorigenesis remains unclear. Because of its role as an epigenetic and transcriptional regulator, histone deacetylase 3 (HDAC3) is essential for DNA damage control and is often aberrantly expressed in human HCC. In this study, we used individual class I HDAC member-deficient mice to demonstrate that K9 in histone H3 (H3K9), which is the critical site for the assembly of DNA damage response complexes, is exclusively targeted by HDAC3. Ablation of HDAC3 disrupted the deacetylation and consequent trimethylation of H3K9 (H3K9me3), the first step in double-strand break repair, and led to the accumulation of damaged DNA. Simultaneously, hyperacetylated H3K9 (H3K9ac) served as a transcriptional activator and enhanced multiple signaling pathways to promote tumorigenesis. Together, these results show that HDAC3 targets the H3K9ac/H3K9me3 transition to serve as a critical regulator that controls both DNA damage repair and the transcription of many tumor-related genes. Moreover, these findings provide novel insights into the link between DNA damage and transcriptional reprogramming in tumorigenesis. SIGNIFICANCE: These findings show that HDAC3 exclusively regulates H3K9ac in response to DNA damage, and loss of HDAC3 activity shifts the balance from DNA damage control to protumorigenic transcriptional activity.</description><subject>Animals</subject><subject>Carcinoma, Hepatocellular - enzymology</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Cellular Reprogramming - physiology</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Histone Deacetylases - deficiency</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Liver Neoplasms - enzymology</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms, Experimental - enzymology</subject><subject>Liver Neoplasms, Experimental - genetics</subject><subject>Liver Neoplasms, Experimental - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Transcription, Genetic</subject><subject>Transcriptome</subject><issn>0008-5472</issn><issn>1538-7445</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUdFOwjAUbYxGEP0EzR59GbTrunYvJmSoGIn6gM9NV-6ghrXYDhL-3i0g0aeTm3vuuSfnIHRL8JAQJkYYYxGzlCdDrWxMREx5xs9QnzAqYp6m7Bz1T5weugrhqx0ZwewS9SjBOU951kfz6WRc0GgCldEGrN5HH97VroEQzcwOfFQoq1toVt5tl6tIdVTQTWRsNKWvudKjDmqg0dwrG0xjnL1GF5VaB7g54gB9Pj3Oi2k8e39-KcazWLMkb-KEJoThCpecQJbojFS5BsaB8BLUgqeKlVwTzdJUlwsiWAKMZQwEVKQUFc3oAD0cdDfbsoaFBtt4tZYbb2rl99IpI_9vrFnJpdvJLON5TkUrcH8U8O57C6GRtQka1mtlwW2DTFqLmHOOOyo7ULV3IXioTm8Ill0jsktbdmnLYvwmiZBdI-3d3V-Pp6vfCugPKzyGyA</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Ji, Hongjie</creator><creator>Zhou, Yongjie</creator><creator>Zhuang, Xiang</creator><creator>Zhu, Yongjie</creator><creator>Wu, Zhenru</creator><creator>Lu, Yannrong</creator><creator>Li, Shengfu</creator><creator>Zeng, Yong</creator><creator>Lu, Qing R</creator><creator>Huo, Yanying</creator><creator>Shi, Yujun</creator><creator>Bu, Hong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0494-6023</orcidid><orcidid>https://orcid.org/0000-0001-6846-9014</orcidid></search><sort><creationdate>20190715</creationdate><title>HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition</title><author>Ji, Hongjie ; Zhou, Yongjie ; Zhuang, Xiang ; Zhu, Yongjie ; Wu, Zhenru ; Lu, Yannrong ; Li, Shengfu ; Zeng, Yong ; Lu, Qing R ; Huo, Yanying ; Shi, Yujun ; Bu, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-232150f0b71e62c61f9ce57e17bead74a5b7c1c544cbd1852e5565e8ef1b8f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Carcinoma, Hepatocellular - enzymology</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Cellular Reprogramming - physiology</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Histone Deacetylases - deficiency</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Liver Neoplasms - enzymology</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms, Experimental - enzymology</topic><topic>Liver Neoplasms, Experimental - genetics</topic><topic>Liver Neoplasms, Experimental - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Transcription, Genetic</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Hongjie</creatorcontrib><creatorcontrib>Zhou, Yongjie</creatorcontrib><creatorcontrib>Zhuang, Xiang</creatorcontrib><creatorcontrib>Zhu, Yongjie</creatorcontrib><creatorcontrib>Wu, Zhenru</creatorcontrib><creatorcontrib>Lu, Yannrong</creatorcontrib><creatorcontrib>Li, Shengfu</creatorcontrib><creatorcontrib>Zeng, Yong</creatorcontrib><creatorcontrib>Lu, Qing R</creatorcontrib><creatorcontrib>Huo, Yanying</creatorcontrib><creatorcontrib>Shi, Yujun</creatorcontrib><creatorcontrib>Bu, Hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Hongjie</au><au>Zhou, Yongjie</au><au>Zhuang, Xiang</au><au>Zhu, Yongjie</au><au>Wu, Zhenru</au><au>Lu, Yannrong</au><au>Li, Shengfu</au><au>Zeng, Yong</au><au>Lu, Qing R</au><au>Huo, Yanying</au><au>Shi, Yujun</au><au>Bu, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2019-07-15</date><risdate>2019</risdate><volume>79</volume><issue>14</issue><spage>3676</spage><epage>3688</epage><pages>3676-3688</pages><issn>0008-5472</issn><issn>1538-7445</issn><eissn>1538-7445</eissn><abstract>DNA damage triggers diverse cancers, particularly hepatocellular carcinoma (HCC), but the intrinsic link between DNA damage and tumorigenesis remains unclear. Because of its role as an epigenetic and transcriptional regulator, histone deacetylase 3 (HDAC3) is essential for DNA damage control and is often aberrantly expressed in human HCC. In this study, we used individual class I HDAC member-deficient mice to demonstrate that K9 in histone H3 (H3K9), which is the critical site for the assembly of DNA damage response complexes, is exclusively targeted by HDAC3. Ablation of HDAC3 disrupted the deacetylation and consequent trimethylation of H3K9 (H3K9me3), the first step in double-strand break repair, and led to the accumulation of damaged DNA. Simultaneously, hyperacetylated H3K9 (H3K9ac) served as a transcriptional activator and enhanced multiple signaling pathways to promote tumorigenesis. Together, these results show that HDAC3 targets the H3K9ac/H3K9me3 transition to serve as a critical regulator that controls both DNA damage repair and the transcription of many tumor-related genes. Moreover, these findings provide novel insights into the link between DNA damage and transcriptional reprogramming in tumorigenesis. SIGNIFICANCE: These findings show that HDAC3 exclusively regulates H3K9ac in response to DNA damage, and loss of HDAC3 activity shifts the balance from DNA damage control to protumorigenic transcriptional activity.</abstract><cop>United States</cop><pmid>31097476</pmid><doi>10.1158/0008-5472.can-18-3767</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0494-6023</orcidid><orcidid>https://orcid.org/0000-0001-6846-9014</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2019-07, Vol.79 (14), p.3676-3688 |
issn | 0008-5472 1538-7445 1538-7445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679938 |
source | MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Carcinoma, Hepatocellular - enzymology Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - metabolism Cellular Reprogramming - physiology DNA Damage DNA Repair Histone Deacetylases - deficiency Histone Deacetylases - genetics Histone Deacetylases - metabolism Histones - genetics Histones - metabolism Humans Liver Neoplasms - enzymology Liver Neoplasms - genetics Liver Neoplasms - metabolism Liver Neoplasms, Experimental - enzymology Liver Neoplasms, Experimental - genetics Liver Neoplasms, Experimental - metabolism Mice Mice, Knockout Mice, Transgenic Transcription, Genetic Transcriptome |
title | HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDAC3%20Deficiency%20Promotes%20Liver%20Cancer%20through%20a%20Defect%20in%20H3K9ac/H3K9me3%20Transition&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Ji,%20Hongjie&rft.date=2019-07-15&rft.volume=79&rft.issue=14&rft.spage=3676&rft.epage=3688&rft.pages=3676-3688&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.can-18-3767&rft_dat=%3Cproquest_pubme%3E2232077708%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232077708&rft_id=info:pmid/31097476&rfr_iscdi=true |