HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition

DNA damage triggers diverse cancers, particularly hepatocellular carcinoma (HCC), but the intrinsic link between DNA damage and tumorigenesis remains unclear. Because of its role as an epigenetic and transcriptional regulator, histone deacetylase 3 (HDAC3) is essential for DNA damage control and is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2019-07, Vol.79 (14), p.3676-3688
Hauptverfasser: Ji, Hongjie, Zhou, Yongjie, Zhuang, Xiang, Zhu, Yongjie, Wu, Zhenru, Lu, Yannrong, Li, Shengfu, Zeng, Yong, Lu, Qing R, Huo, Yanying, Shi, Yujun, Bu, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3688
container_issue 14
container_start_page 3676
container_title Cancer research (Chicago, Ill.)
container_volume 79
creator Ji, Hongjie
Zhou, Yongjie
Zhuang, Xiang
Zhu, Yongjie
Wu, Zhenru
Lu, Yannrong
Li, Shengfu
Zeng, Yong
Lu, Qing R
Huo, Yanying
Shi, Yujun
Bu, Hong
description DNA damage triggers diverse cancers, particularly hepatocellular carcinoma (HCC), but the intrinsic link between DNA damage and tumorigenesis remains unclear. Because of its role as an epigenetic and transcriptional regulator, histone deacetylase 3 (HDAC3) is essential for DNA damage control and is often aberrantly expressed in human HCC. In this study, we used individual class I HDAC member-deficient mice to demonstrate that K9 in histone H3 (H3K9), which is the critical site for the assembly of DNA damage response complexes, is exclusively targeted by HDAC3. Ablation of HDAC3 disrupted the deacetylation and consequent trimethylation of H3K9 (H3K9me3), the first step in double-strand break repair, and led to the accumulation of damaged DNA. Simultaneously, hyperacetylated H3K9 (H3K9ac) served as a transcriptional activator and enhanced multiple signaling pathways to promote tumorigenesis. Together, these results show that HDAC3 targets the H3K9ac/H3K9me3 transition to serve as a critical regulator that controls both DNA damage repair and the transcription of many tumor-related genes. Moreover, these findings provide novel insights into the link between DNA damage and transcriptional reprogramming in tumorigenesis. SIGNIFICANCE: These findings show that HDAC3 exclusively regulates H3K9ac in response to DNA damage, and loss of HDAC3 activity shifts the balance from DNA damage control to protumorigenic transcriptional activity.
doi_str_mv 10.1158/0008-5472.can-18-3767
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232077708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-232150f0b71e62c61f9ce57e17bead74a5b7c1c544cbd1852e5565e8ef1b8f363</originalsourceid><addsrcrecordid>eNpVUdFOwjAUbYxGEP0EzR59GbTrunYvJmSoGIn6gM9NV-6ghrXYDhL-3i0g0aeTm3vuuSfnIHRL8JAQJkYYYxGzlCdDrWxMREx5xs9QnzAqYp6m7Bz1T5weugrhqx0ZwewS9SjBOU951kfz6WRc0GgCldEGrN5HH97VroEQzcwOfFQoq1toVt5tl6tIdVTQTWRsNKWvudKjDmqg0dwrG0xjnL1GF5VaB7g54gB9Pj3Oi2k8e39-KcazWLMkb-KEJoThCpecQJbojFS5BsaB8BLUgqeKlVwTzdJUlwsiWAKMZQwEVKQUFc3oAD0cdDfbsoaFBtt4tZYbb2rl99IpI_9vrFnJpdvJLON5TkUrcH8U8O57C6GRtQka1mtlwW2DTFqLmHOOOyo7ULV3IXioTm8Ill0jsktbdmnLYvwmiZBdI-3d3V-Pp6vfCugPKzyGyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232077708</pqid></control><display><type>article</type><title>HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ji, Hongjie ; Zhou, Yongjie ; Zhuang, Xiang ; Zhu, Yongjie ; Wu, Zhenru ; Lu, Yannrong ; Li, Shengfu ; Zeng, Yong ; Lu, Qing R ; Huo, Yanying ; Shi, Yujun ; Bu, Hong</creator><creatorcontrib>Ji, Hongjie ; Zhou, Yongjie ; Zhuang, Xiang ; Zhu, Yongjie ; Wu, Zhenru ; Lu, Yannrong ; Li, Shengfu ; Zeng, Yong ; Lu, Qing R ; Huo, Yanying ; Shi, Yujun ; Bu, Hong</creatorcontrib><description>DNA damage triggers diverse cancers, particularly hepatocellular carcinoma (HCC), but the intrinsic link between DNA damage and tumorigenesis remains unclear. Because of its role as an epigenetic and transcriptional regulator, histone deacetylase 3 (HDAC3) is essential for DNA damage control and is often aberrantly expressed in human HCC. In this study, we used individual class I HDAC member-deficient mice to demonstrate that K9 in histone H3 (H3K9), which is the critical site for the assembly of DNA damage response complexes, is exclusively targeted by HDAC3. Ablation of HDAC3 disrupted the deacetylation and consequent trimethylation of H3K9 (H3K9me3), the first step in double-strand break repair, and led to the accumulation of damaged DNA. Simultaneously, hyperacetylated H3K9 (H3K9ac) served as a transcriptional activator and enhanced multiple signaling pathways to promote tumorigenesis. Together, these results show that HDAC3 targets the H3K9ac/H3K9me3 transition to serve as a critical regulator that controls both DNA damage repair and the transcription of many tumor-related genes. Moreover, these findings provide novel insights into the link between DNA damage and transcriptional reprogramming in tumorigenesis. SIGNIFICANCE: These findings show that HDAC3 exclusively regulates H3K9ac in response to DNA damage, and loss of HDAC3 activity shifts the balance from DNA damage control to protumorigenic transcriptional activity.</description><identifier>ISSN: 0008-5472</identifier><identifier>ISSN: 1538-7445</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-18-3767</identifier><identifier>PMID: 31097476</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Carcinoma, Hepatocellular - enzymology ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - metabolism ; Cellular Reprogramming - physiology ; DNA Damage ; DNA Repair ; Histone Deacetylases - deficiency ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Histones - genetics ; Histones - metabolism ; Humans ; Liver Neoplasms - enzymology ; Liver Neoplasms - genetics ; Liver Neoplasms - metabolism ; Liver Neoplasms, Experimental - enzymology ; Liver Neoplasms, Experimental - genetics ; Liver Neoplasms, Experimental - metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Transcription, Genetic ; Transcriptome</subject><ispartof>Cancer research (Chicago, Ill.), 2019-07, Vol.79 (14), p.3676-3688</ispartof><rights>2019 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-232150f0b71e62c61f9ce57e17bead74a5b7c1c544cbd1852e5565e8ef1b8f363</citedby><cites>FETCH-LOGICAL-c529t-232150f0b71e62c61f9ce57e17bead74a5b7c1c544cbd1852e5565e8ef1b8f363</cites><orcidid>0000-0003-0494-6023 ; 0000-0001-6846-9014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,3357,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31097476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Hongjie</creatorcontrib><creatorcontrib>Zhou, Yongjie</creatorcontrib><creatorcontrib>Zhuang, Xiang</creatorcontrib><creatorcontrib>Zhu, Yongjie</creatorcontrib><creatorcontrib>Wu, Zhenru</creatorcontrib><creatorcontrib>Lu, Yannrong</creatorcontrib><creatorcontrib>Li, Shengfu</creatorcontrib><creatorcontrib>Zeng, Yong</creatorcontrib><creatorcontrib>Lu, Qing R</creatorcontrib><creatorcontrib>Huo, Yanying</creatorcontrib><creatorcontrib>Shi, Yujun</creatorcontrib><creatorcontrib>Bu, Hong</creatorcontrib><title>HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>DNA damage triggers diverse cancers, particularly hepatocellular carcinoma (HCC), but the intrinsic link between DNA damage and tumorigenesis remains unclear. Because of its role as an epigenetic and transcriptional regulator, histone deacetylase 3 (HDAC3) is essential for DNA damage control and is often aberrantly expressed in human HCC. In this study, we used individual class I HDAC member-deficient mice to demonstrate that K9 in histone H3 (H3K9), which is the critical site for the assembly of DNA damage response complexes, is exclusively targeted by HDAC3. Ablation of HDAC3 disrupted the deacetylation and consequent trimethylation of H3K9 (H3K9me3), the first step in double-strand break repair, and led to the accumulation of damaged DNA. Simultaneously, hyperacetylated H3K9 (H3K9ac) served as a transcriptional activator and enhanced multiple signaling pathways to promote tumorigenesis. Together, these results show that HDAC3 targets the H3K9ac/H3K9me3 transition to serve as a critical regulator that controls both DNA damage repair and the transcription of many tumor-related genes. Moreover, these findings provide novel insights into the link between DNA damage and transcriptional reprogramming in tumorigenesis. SIGNIFICANCE: These findings show that HDAC3 exclusively regulates H3K9ac in response to DNA damage, and loss of HDAC3 activity shifts the balance from DNA damage control to protumorigenic transcriptional activity.</description><subject>Animals</subject><subject>Carcinoma, Hepatocellular - enzymology</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Cellular Reprogramming - physiology</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Histone Deacetylases - deficiency</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Liver Neoplasms - enzymology</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms, Experimental - enzymology</subject><subject>Liver Neoplasms, Experimental - genetics</subject><subject>Liver Neoplasms, Experimental - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Transcription, Genetic</subject><subject>Transcriptome</subject><issn>0008-5472</issn><issn>1538-7445</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUdFOwjAUbYxGEP0EzR59GbTrunYvJmSoGIn6gM9NV-6ghrXYDhL-3i0g0aeTm3vuuSfnIHRL8JAQJkYYYxGzlCdDrWxMREx5xs9QnzAqYp6m7Bz1T5weugrhqx0ZwewS9SjBOU951kfz6WRc0GgCldEGrN5HH97VroEQzcwOfFQoq1toVt5tl6tIdVTQTWRsNKWvudKjDmqg0dwrG0xjnL1GF5VaB7g54gB9Pj3Oi2k8e39-KcazWLMkb-KEJoThCpecQJbojFS5BsaB8BLUgqeKlVwTzdJUlwsiWAKMZQwEVKQUFc3oAD0cdDfbsoaFBtt4tZYbb2rl99IpI_9vrFnJpdvJLON5TkUrcH8U8O57C6GRtQka1mtlwW2DTFqLmHOOOyo7ULV3IXioTm8Ill0jsktbdmnLYvwmiZBdI-3d3V-Pp6vfCugPKzyGyA</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Ji, Hongjie</creator><creator>Zhou, Yongjie</creator><creator>Zhuang, Xiang</creator><creator>Zhu, Yongjie</creator><creator>Wu, Zhenru</creator><creator>Lu, Yannrong</creator><creator>Li, Shengfu</creator><creator>Zeng, Yong</creator><creator>Lu, Qing R</creator><creator>Huo, Yanying</creator><creator>Shi, Yujun</creator><creator>Bu, Hong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0494-6023</orcidid><orcidid>https://orcid.org/0000-0001-6846-9014</orcidid></search><sort><creationdate>20190715</creationdate><title>HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition</title><author>Ji, Hongjie ; Zhou, Yongjie ; Zhuang, Xiang ; Zhu, Yongjie ; Wu, Zhenru ; Lu, Yannrong ; Li, Shengfu ; Zeng, Yong ; Lu, Qing R ; Huo, Yanying ; Shi, Yujun ; Bu, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-232150f0b71e62c61f9ce57e17bead74a5b7c1c544cbd1852e5565e8ef1b8f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Carcinoma, Hepatocellular - enzymology</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Cellular Reprogramming - physiology</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Histone Deacetylases - deficiency</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Liver Neoplasms - enzymology</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms, Experimental - enzymology</topic><topic>Liver Neoplasms, Experimental - genetics</topic><topic>Liver Neoplasms, Experimental - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Transcription, Genetic</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Hongjie</creatorcontrib><creatorcontrib>Zhou, Yongjie</creatorcontrib><creatorcontrib>Zhuang, Xiang</creatorcontrib><creatorcontrib>Zhu, Yongjie</creatorcontrib><creatorcontrib>Wu, Zhenru</creatorcontrib><creatorcontrib>Lu, Yannrong</creatorcontrib><creatorcontrib>Li, Shengfu</creatorcontrib><creatorcontrib>Zeng, Yong</creatorcontrib><creatorcontrib>Lu, Qing R</creatorcontrib><creatorcontrib>Huo, Yanying</creatorcontrib><creatorcontrib>Shi, Yujun</creatorcontrib><creatorcontrib>Bu, Hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Hongjie</au><au>Zhou, Yongjie</au><au>Zhuang, Xiang</au><au>Zhu, Yongjie</au><au>Wu, Zhenru</au><au>Lu, Yannrong</au><au>Li, Shengfu</au><au>Zeng, Yong</au><au>Lu, Qing R</au><au>Huo, Yanying</au><au>Shi, Yujun</au><au>Bu, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2019-07-15</date><risdate>2019</risdate><volume>79</volume><issue>14</issue><spage>3676</spage><epage>3688</epage><pages>3676-3688</pages><issn>0008-5472</issn><issn>1538-7445</issn><eissn>1538-7445</eissn><abstract>DNA damage triggers diverse cancers, particularly hepatocellular carcinoma (HCC), but the intrinsic link between DNA damage and tumorigenesis remains unclear. Because of its role as an epigenetic and transcriptional regulator, histone deacetylase 3 (HDAC3) is essential for DNA damage control and is often aberrantly expressed in human HCC. In this study, we used individual class I HDAC member-deficient mice to demonstrate that K9 in histone H3 (H3K9), which is the critical site for the assembly of DNA damage response complexes, is exclusively targeted by HDAC3. Ablation of HDAC3 disrupted the deacetylation and consequent trimethylation of H3K9 (H3K9me3), the first step in double-strand break repair, and led to the accumulation of damaged DNA. Simultaneously, hyperacetylated H3K9 (H3K9ac) served as a transcriptional activator and enhanced multiple signaling pathways to promote tumorigenesis. Together, these results show that HDAC3 targets the H3K9ac/H3K9me3 transition to serve as a critical regulator that controls both DNA damage repair and the transcription of many tumor-related genes. Moreover, these findings provide novel insights into the link between DNA damage and transcriptional reprogramming in tumorigenesis. SIGNIFICANCE: These findings show that HDAC3 exclusively regulates H3K9ac in response to DNA damage, and loss of HDAC3 activity shifts the balance from DNA damage control to protumorigenic transcriptional activity.</abstract><cop>United States</cop><pmid>31097476</pmid><doi>10.1158/0008-5472.can-18-3767</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0494-6023</orcidid><orcidid>https://orcid.org/0000-0001-6846-9014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2019-07, Vol.79 (14), p.3676-3688
issn 0008-5472
1538-7445
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679938
source MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals
subjects Animals
Carcinoma, Hepatocellular - enzymology
Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - metabolism
Cellular Reprogramming - physiology
DNA Damage
DNA Repair
Histone Deacetylases - deficiency
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Histones - genetics
Histones - metabolism
Humans
Liver Neoplasms - enzymology
Liver Neoplasms - genetics
Liver Neoplasms - metabolism
Liver Neoplasms, Experimental - enzymology
Liver Neoplasms, Experimental - genetics
Liver Neoplasms, Experimental - metabolism
Mice
Mice, Knockout
Mice, Transgenic
Transcription, Genetic
Transcriptome
title HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDAC3%20Deficiency%20Promotes%20Liver%20Cancer%20through%20a%20Defect%20in%20H3K9ac/H3K9me3%20Transition&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Ji,%20Hongjie&rft.date=2019-07-15&rft.volume=79&rft.issue=14&rft.spage=3676&rft.epage=3688&rft.pages=3676-3688&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.can-18-3767&rft_dat=%3Cproquest_pubme%3E2232077708%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232077708&rft_id=info:pmid/31097476&rfr_iscdi=true