CD40-targeted peptide proposed for type 1 diabetes therapy lacks relevant binding affinity to its cognate receptor. Reply to Pagni PP, Wolf A, Lo Conte M et al [letter]
Although insulin resistance induces compensatory increases in beta cell mass and function to maintain normoglycaemia, it is not clear whether insulin resistance can precipitate beta cell dysfunction and hyperglycaemia without a pre-existing beta cell susceptibility. We therefore examined the beta ce...
Gespeichert in:
Veröffentlicht in: | Diabetologia 2019-09, Vol.62 (9), p.1730-1731 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1731 |
---|---|
container_issue | 9 |
container_start_page | 1730 |
container_title | Diabetologia |
container_volume | 62 |
creator | Vaitaitis, Gisela M. Olmstead, Michael H. Waid, Dan M. Carter, Jessica R. Wagner, David H. |
description | Although insulin resistance induces compensatory increases in beta cell mass and function to maintain normoglycaemia, it is not clear whether insulin resistance can precipitate beta cell dysfunction and hyperglycaemia without a pre-existing beta cell susceptibility. We therefore examined the beta cell phenotype in the MKR mouse, a model in which expression of a dominant-negative IGF 1 receptor (IGF1R) in skeletal muscle leads to systemic insulin resistance and diabetes. Circulating glucose, insulin and glucagon concentrations were measured. Insulin sensitivity, glucose tolerance and insulin release in vivo were assessed by i.p. insulin and glucose tolerance tests. Beta cell function was assessed via insulin secretion from isolated islets and the glucose gradient in the perfused pancreas. Beta cell morphology was examined via immunohistochemistry. MKR mice were fed a high-fat diet containing sucrose (HFSD) to test metabolic capacity and beta cell function. Insulin-resistant MKR mice developed hyperglycaemia and a loss of insulin responsiveness in vivo. Basal insulin secretion from the perfused pancreas was elevated, with no response to glucose. Despite the demand on insulin secretion, MKR mice had increased pancreatic insulin content and beta cell mass mediated through hyperplasia and hypertrophy. The HFSD worsened hyperglycaemia in MKR mice but, despite increased food intake in these mice, failed to induce the obesity observed in wild-type mice. Our studies demonstrate that insulin resistance of sufficient severity can impair glucose-stimulated insulin secretion, thereby undermining beta cell compensation and leading to hyperglycaemia. Moreover, because insulin stores were intact, the secretory defects reflect an early stage of beta cell dysfunction. |
doi_str_mv | 10.1007/s00125-019-4945-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>977187631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-8fcd9f38218f5382e836b813981eeabbe5039ebb04b31fd9853d25276093e6403</originalsourceid><addsrcrecordid>eNp1ktuKFDEQhoMo7jr6AN5I8GovttecO30jLOMRRhxEURAJ6e7q3qw9SZtkFuaNfEwzzroewKuC-r_6K0V-hB5SckYJqZ8kQiiTFaFNJRohq_oWOqaCs4oIpm-j471cUa0-HaF7KV0SQrgU6i464pRpRaU4Rt-XzwSpso0jZOjxDHN2PeA5hjmk0hhCxHk3A6a4d7YtUML5AqKdd3iy3deEI0xwZX3GrfO98yO2w-C8yzucA3Y54S6M3mYoYFfcQzzD72CefsprO3qH1-tT_DFMAz4_xauAl8EX-g2GjO2EP0-QM8Qv99GdwU4JHlzXBfrw4vn75atq9fbl6-X5quqEanKlh65vBq4Z1YMsBTRXraa80RTAti1IwhtoWyJaToe-0ZL3TLJakYaDEoQv0NOD77xtN9B34HO0k5mj29i4M8E687fi3YUZw5VRqm50cVmgk2uDGL5tIWWzcamDabIewjYZxqSQtNb1Hn38D3oZttGX8wyjXAvZKFUgeoC6GFKKMNy8hRKzj4E5xMCUGJh9DExdZh79ecTNxK9_LwA7AKlIfoT4e_P_XX8AJp--RA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213845966</pqid></control><display><type>article</type><title>CD40-targeted peptide proposed for type 1 diabetes therapy lacks relevant binding affinity to its cognate receptor. Reply to Pagni PP, Wolf A, Lo Conte M et al [letter]</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Vaitaitis, Gisela M. ; Olmstead, Michael H. ; Waid, Dan M. ; Carter, Jessica R. ; Wagner, David H.</creator><creatorcontrib>Vaitaitis, Gisela M. ; Olmstead, Michael H. ; Waid, Dan M. ; Carter, Jessica R. ; Wagner, David H.</creatorcontrib><description>Although insulin resistance induces compensatory increases in beta cell mass and function to maintain normoglycaemia, it is not clear whether insulin resistance can precipitate beta cell dysfunction and hyperglycaemia without a pre-existing beta cell susceptibility. We therefore examined the beta cell phenotype in the MKR mouse, a model in which expression of a dominant-negative IGF 1 receptor (IGF1R) in skeletal muscle leads to systemic insulin resistance and diabetes. Circulating glucose, insulin and glucagon concentrations were measured. Insulin sensitivity, glucose tolerance and insulin release in vivo were assessed by i.p. insulin and glucose tolerance tests. Beta cell function was assessed via insulin secretion from isolated islets and the glucose gradient in the perfused pancreas. Beta cell morphology was examined via immunohistochemistry. MKR mice were fed a high-fat diet containing sucrose (HFSD) to test metabolic capacity and beta cell function. Insulin-resistant MKR mice developed hyperglycaemia and a loss of insulin responsiveness in vivo. Basal insulin secretion from the perfused pancreas was elevated, with no response to glucose. Despite the demand on insulin secretion, MKR mice had increased pancreatic insulin content and beta cell mass mediated through hyperplasia and hypertrophy. The HFSD worsened hyperglycaemia in MKR mice but, despite increased food intake in these mice, failed to induce the obesity observed in wild-type mice. Our studies demonstrate that insulin resistance of sufficient severity can impair glucose-stimulated insulin secretion, thereby undermining beta cell compensation and leading to hyperglycaemia. Moreover, because insulin stores were intact, the secretory defects reflect an early stage of beta cell dysfunction.</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-019-4945-7</identifier><identifier>PMID: 31286154</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; CD40 antigen ; CD40 Antigens ; CD40 Ligand ; Cytology ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (insulin dependent) ; Diabetes Mellitus, Type 1 ; Food intake ; Glucagon ; Glucose ; Glucose tolerance ; High fat diet ; Human Physiology ; Hyperglycemia ; Hyperplasia ; Hypertrophy ; Immunohistochemistry ; Insulin ; Insulin resistance ; Insulin secretion ; Insulin-like growth factors ; Internal Medicine ; Letter ; Medicine ; Medicine & Public Health ; Metabolic Diseases ; Mice ; Mice, Inbred NOD ; Pancreas ; Peptides ; Phenotypes ; Skeletal muscle ; Sucrose</subject><ispartof>Diabetologia, 2019-09, Vol.62 (9), p.1730-1731</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Diabetologia is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-8fcd9f38218f5382e836b813981eeabbe5039ebb04b31fd9853d25276093e6403</citedby><cites>FETCH-LOGICAL-c469t-8fcd9f38218f5382e836b813981eeabbe5039ebb04b31fd9853d25276093e6403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00125-019-4945-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00125-019-4945-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31286154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaitaitis, Gisela M.</creatorcontrib><creatorcontrib>Olmstead, Michael H.</creatorcontrib><creatorcontrib>Waid, Dan M.</creatorcontrib><creatorcontrib>Carter, Jessica R.</creatorcontrib><creatorcontrib>Wagner, David H.</creatorcontrib><title>CD40-targeted peptide proposed for type 1 diabetes therapy lacks relevant binding affinity to its cognate receptor. Reply to Pagni PP, Wolf A, Lo Conte M et al [letter]</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Although insulin resistance induces compensatory increases in beta cell mass and function to maintain normoglycaemia, it is not clear whether insulin resistance can precipitate beta cell dysfunction and hyperglycaemia without a pre-existing beta cell susceptibility. We therefore examined the beta cell phenotype in the MKR mouse, a model in which expression of a dominant-negative IGF 1 receptor (IGF1R) in skeletal muscle leads to systemic insulin resistance and diabetes. Circulating glucose, insulin and glucagon concentrations were measured. Insulin sensitivity, glucose tolerance and insulin release in vivo were assessed by i.p. insulin and glucose tolerance tests. Beta cell function was assessed via insulin secretion from isolated islets and the glucose gradient in the perfused pancreas. Beta cell morphology was examined via immunohistochemistry. MKR mice were fed a high-fat diet containing sucrose (HFSD) to test metabolic capacity and beta cell function. Insulin-resistant MKR mice developed hyperglycaemia and a loss of insulin responsiveness in vivo. Basal insulin secretion from the perfused pancreas was elevated, with no response to glucose. Despite the demand on insulin secretion, MKR mice had increased pancreatic insulin content and beta cell mass mediated through hyperplasia and hypertrophy. The HFSD worsened hyperglycaemia in MKR mice but, despite increased food intake in these mice, failed to induce the obesity observed in wild-type mice. Our studies demonstrate that insulin resistance of sufficient severity can impair glucose-stimulated insulin secretion, thereby undermining beta cell compensation and leading to hyperglycaemia. Moreover, because insulin stores were intact, the secretory defects reflect an early stage of beta cell dysfunction.</description><subject>Animals</subject><subject>CD40 antigen</subject><subject>CD40 Antigens</subject><subject>CD40 Ligand</subject><subject>Cytology</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes Mellitus, Type 1</subject><subject>Food intake</subject><subject>Glucagon</subject><subject>Glucose</subject><subject>Glucose tolerance</subject><subject>High fat diet</subject><subject>Human Physiology</subject><subject>Hyperglycemia</subject><subject>Hyperplasia</subject><subject>Hypertrophy</subject><subject>Immunohistochemistry</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulin secretion</subject><subject>Insulin-like growth factors</subject><subject>Internal Medicine</subject><subject>Letter</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Pancreas</subject><subject>Peptides</subject><subject>Phenotypes</subject><subject>Skeletal muscle</subject><subject>Sucrose</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1ktuKFDEQhoMo7jr6AN5I8GovttecO30jLOMRRhxEURAJ6e7q3qw9SZtkFuaNfEwzzroewKuC-r_6K0V-hB5SckYJqZ8kQiiTFaFNJRohq_oWOqaCs4oIpm-j471cUa0-HaF7KV0SQrgU6i464pRpRaU4Rt-XzwSpso0jZOjxDHN2PeA5hjmk0hhCxHk3A6a4d7YtUML5AqKdd3iy3deEI0xwZX3GrfO98yO2w-C8yzucA3Y54S6M3mYoYFfcQzzD72CefsprO3qH1-tT_DFMAz4_xauAl8EX-g2GjO2EP0-QM8Qv99GdwU4JHlzXBfrw4vn75atq9fbl6-X5quqEanKlh65vBq4Z1YMsBTRXraa80RTAti1IwhtoWyJaToe-0ZL3TLJakYaDEoQv0NOD77xtN9B34HO0k5mj29i4M8E687fi3YUZw5VRqm50cVmgk2uDGL5tIWWzcamDabIewjYZxqSQtNb1Hn38D3oZttGX8wyjXAvZKFUgeoC6GFKKMNy8hRKzj4E5xMCUGJh9DExdZh79ecTNxK9_LwA7AKlIfoT4e_P_XX8AJp--RA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Vaitaitis, Gisela M.</creator><creator>Olmstead, Michael H.</creator><creator>Waid, Dan M.</creator><creator>Carter, Jessica R.</creator><creator>Wagner, David H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190901</creationdate><title>CD40-targeted peptide proposed for type 1 diabetes therapy lacks relevant binding affinity to its cognate receptor. Reply to Pagni PP, Wolf A, Lo Conte M et al [letter]</title><author>Vaitaitis, Gisela M. ; Olmstead, Michael H. ; Waid, Dan M. ; Carter, Jessica R. ; Wagner, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-8fcd9f38218f5382e836b813981eeabbe5039ebb04b31fd9853d25276093e6403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>CD40 antigen</topic><topic>CD40 Antigens</topic><topic>CD40 Ligand</topic><topic>Cytology</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes Mellitus, Type 1</topic><topic>Food intake</topic><topic>Glucagon</topic><topic>Glucose</topic><topic>Glucose tolerance</topic><topic>High fat diet</topic><topic>Human Physiology</topic><topic>Hyperglycemia</topic><topic>Hyperplasia</topic><topic>Hypertrophy</topic><topic>Immunohistochemistry</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulin secretion</topic><topic>Insulin-like growth factors</topic><topic>Internal Medicine</topic><topic>Letter</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Pancreas</topic><topic>Peptides</topic><topic>Phenotypes</topic><topic>Skeletal muscle</topic><topic>Sucrose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaitaitis, Gisela M.</creatorcontrib><creatorcontrib>Olmstead, Michael H.</creatorcontrib><creatorcontrib>Waid, Dan M.</creatorcontrib><creatorcontrib>Carter, Jessica R.</creatorcontrib><creatorcontrib>Wagner, David H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaitaitis, Gisela M.</au><au>Olmstead, Michael H.</au><au>Waid, Dan M.</au><au>Carter, Jessica R.</au><au>Wagner, David H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CD40-targeted peptide proposed for type 1 diabetes therapy lacks relevant binding affinity to its cognate receptor. Reply to Pagni PP, Wolf A, Lo Conte M et al [letter]</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>62</volume><issue>9</issue><spage>1730</spage><epage>1731</epage><pages>1730-1731</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>Although insulin resistance induces compensatory increases in beta cell mass and function to maintain normoglycaemia, it is not clear whether insulin resistance can precipitate beta cell dysfunction and hyperglycaemia without a pre-existing beta cell susceptibility. We therefore examined the beta cell phenotype in the MKR mouse, a model in which expression of a dominant-negative IGF 1 receptor (IGF1R) in skeletal muscle leads to systemic insulin resistance and diabetes. Circulating glucose, insulin and glucagon concentrations were measured. Insulin sensitivity, glucose tolerance and insulin release in vivo were assessed by i.p. insulin and glucose tolerance tests. Beta cell function was assessed via insulin secretion from isolated islets and the glucose gradient in the perfused pancreas. Beta cell morphology was examined via immunohistochemistry. MKR mice were fed a high-fat diet containing sucrose (HFSD) to test metabolic capacity and beta cell function. Insulin-resistant MKR mice developed hyperglycaemia and a loss of insulin responsiveness in vivo. Basal insulin secretion from the perfused pancreas was elevated, with no response to glucose. Despite the demand on insulin secretion, MKR mice had increased pancreatic insulin content and beta cell mass mediated through hyperplasia and hypertrophy. The HFSD worsened hyperglycaemia in MKR mice but, despite increased food intake in these mice, failed to induce the obesity observed in wild-type mice. Our studies demonstrate that insulin resistance of sufficient severity can impair glucose-stimulated insulin secretion, thereby undermining beta cell compensation and leading to hyperglycaemia. Moreover, because insulin stores were intact, the secretory defects reflect an early stage of beta cell dysfunction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31286154</pmid><doi>10.1007/s00125-019-4945-7</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-186X |
ispartof | Diabetologia, 2019-09, Vol.62 (9), p.1730-1731 |
issn | 0012-186X 1432-0428 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679809 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals CD40 antigen CD40 Antigens CD40 Ligand Cytology Diabetes Diabetes mellitus Diabetes mellitus (insulin dependent) Diabetes Mellitus, Type 1 Food intake Glucagon Glucose Glucose tolerance High fat diet Human Physiology Hyperglycemia Hyperplasia Hypertrophy Immunohistochemistry Insulin Insulin resistance Insulin secretion Insulin-like growth factors Internal Medicine Letter Medicine Medicine & Public Health Metabolic Diseases Mice Mice, Inbred NOD Pancreas Peptides Phenotypes Skeletal muscle Sucrose |
title | CD40-targeted peptide proposed for type 1 diabetes therapy lacks relevant binding affinity to its cognate receptor. Reply to Pagni PP, Wolf A, Lo Conte M et al [letter] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CD40-targeted%20peptide%20proposed%20for%20type%201%20diabetes%20therapy%20lacks%20relevant%20binding%20affinity%20to%20its%20cognate%20receptor.%20Reply%20to%20Pagni%20PP,%20Wolf%20A,%20Lo%20Conte%20M%20et%20al%20%5Bletter%5D&rft.jtitle=Diabetologia&rft.au=Vaitaitis,%20Gisela%20M.&rft.date=2019-09-01&rft.volume=62&rft.issue=9&rft.spage=1730&rft.epage=1731&rft.pages=1730-1731&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-019-4945-7&rft_dat=%3Cproquest_pubme%3E977187631%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213845966&rft_id=info:pmid/31286154&rfr_iscdi=true |