Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data

The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species id...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2019-07, Vol.10 (7), p.509
Hauptverfasser: Lan, Tian Ming, Lin, Yu, Njaramba-Ngatia, Jacob, Guo, Xiao Sen, Li, Ren Gui, Li, Hai Meng, Kumar-Sahu, Sunil, Wang, Xie, Yang, Xiu Juan, Guo, Hua Bing, Xu, Wen Hao, Kristiansen, Karsten, Liu, Huan, Xu, Yan Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 509
container_title Genes
container_volume 10
creator Lan, Tian Ming
Lin, Yu
Njaramba-Ngatia, Jacob
Guo, Xiao Sen
Li, Ren Gui
Li, Hai Meng
Kumar-Sahu, Sunil
Wang, Xie
Yang, Xiu Juan
Guo, Hua Bing
Xu, Wen Hao
Kristiansen, Karsten
Liu, Huan
Xu, Yan Chun
description The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species identification of biological samples, including ancient remains. However, it is challenging for these methods to process extremely ancient samples with severe DNA fragmentation and contamination. Here, we applied whole-genome sequencing data from 12 ancient samples with ages ranging from 2.7 to 700 kya to compare different mapping algorithms, and tested different reference databases, mapping similarities and query coverage to explore the best method and mapping parameters that can improve the accuracy of ancient mammal species identification. The selected method and parameters were tested using 152 ancient samples, and 150 of the samples were successfully identified. We further screened the BLAST-based mapping results according to the deamination characteristics of ancient DNA to improve the ability of ancient species identification. Our findings demonstrate a marked improvement to the normal procedures used for ancient species identification, which was achieved through defining the mapping and filtering guidelines to identify true ancient DNA sequences. The guidelines summarized in this study could be valuable in archaeology, paleontology, evolution, and forensic science. For the convenience of the scientific community, we wrote a software script with Perl, called AncSid, which is made available on GitHub.
doi_str_mv 10.3390/genes10070509
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548455905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-2880734e5b4f90e64a6fa12afe0f02a48355cd26c6ffde635f6bf82caea5cf0c3</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa0KVBBw7LVaqZdetp31V3YvSBRaiBToIeWGZDnecTDK2qm9QeW_76AAAnwZS--npzfzGPvUwDchOvi-xIilAZiAgu4D2-cwEbWUXO28-u-xo1LugJ4EDqA-sj3R8FYqEPvsZjqsc7oPcVnN1-gClmraYxyDD86OIcUq-eokkhDH6tIOg12V6oct2FekXeG_sT6nEHnLzvHvBgkmtzM72kO264nHo6d5wK5__fxzelHPfp9PT09mtZNtM9a8bSmrRLWQvgPU0mpvG249ggduZSuUcj3XTnvfoxbK64VvubNolfPgxAE73vquN4sBe0dZs12ZdQ6DzQ8m2WDeKjHcmmW6N1pPOug0GXx9MsiJNiijGUJxuFrZiGlTDOeKzjURIAn98g69S5scaT1DEF1VdaCIqreUy6mUjP4lTAPmsTrzpjriP7_e4IV-Lkr8B-1jli8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548455905</pqid></control><display><type>article</type><title>Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Lan, Tian Ming ; Lin, Yu ; Njaramba-Ngatia, Jacob ; Guo, Xiao Sen ; Li, Ren Gui ; Li, Hai Meng ; Kumar-Sahu, Sunil ; Wang, Xie ; Yang, Xiu Juan ; Guo, Hua Bing ; Xu, Wen Hao ; Kristiansen, Karsten ; Liu, Huan ; Xu, Yan Chun</creator><creatorcontrib>Lan, Tian Ming ; Lin, Yu ; Njaramba-Ngatia, Jacob ; Guo, Xiao Sen ; Li, Ren Gui ; Li, Hai Meng ; Kumar-Sahu, Sunil ; Wang, Xie ; Yang, Xiu Juan ; Guo, Hua Bing ; Xu, Wen Hao ; Kristiansen, Karsten ; Liu, Huan ; Xu, Yan Chun</creatorcontrib><description>The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species identification of biological samples, including ancient remains. However, it is challenging for these methods to process extremely ancient samples with severe DNA fragmentation and contamination. Here, we applied whole-genome sequencing data from 12 ancient samples with ages ranging from 2.7 to 700 kya to compare different mapping algorithms, and tested different reference databases, mapping similarities and query coverage to explore the best method and mapping parameters that can improve the accuracy of ancient mammal species identification. The selected method and parameters were tested using 152 ancient samples, and 150 of the samples were successfully identified. We further screened the BLAST-based mapping results according to the deamination characteristics of ancient DNA to improve the ability of ancient species identification. Our findings demonstrate a marked improvement to the normal procedures used for ancient species identification, which was achieved through defining the mapping and filtering guidelines to identify true ancient DNA sequences. The guidelines summarized in this study could be valuable in archaeology, paleontology, evolution, and forensic science. For the convenience of the scientific community, we wrote a software script with Perl, called AncSid, which is made available on GitHub.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes10070509</identifier><identifier>PMID: 31284503</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Animals ; Archaeology ; Contamination ; Deamination ; Deoxyribonucleic acid ; DNA ; DNA fragmentation ; DNA sequencing ; DNA, Mitochondrial ; Forensic science ; Gene mapping ; Genome ; Genomes ; Goats - genetics ; High-Throughput Nucleotide Sequencing ; Horses - genetics ; Humans ; Identification ; Laboratories ; Mammoths - genetics ; Next-generation sequencing ; Nucleotide sequence ; Paleontology ; Ruminants - genetics ; Species ; Whole genome sequencing</subject><ispartof>Genes, 2019-07, Vol.10 (7), p.509</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-2880734e5b4f90e64a6fa12afe0f02a48355cd26c6ffde635f6bf82caea5cf0c3</citedby><cites>FETCH-LOGICAL-c481t-2880734e5b4f90e64a6fa12afe0f02a48355cd26c6ffde635f6bf82caea5cf0c3</cites><orcidid>0000-0003-3909-0931 ; 0000-0002-6181-939X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679096/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679096/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31284503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Tian Ming</creatorcontrib><creatorcontrib>Lin, Yu</creatorcontrib><creatorcontrib>Njaramba-Ngatia, Jacob</creatorcontrib><creatorcontrib>Guo, Xiao Sen</creatorcontrib><creatorcontrib>Li, Ren Gui</creatorcontrib><creatorcontrib>Li, Hai Meng</creatorcontrib><creatorcontrib>Kumar-Sahu, Sunil</creatorcontrib><creatorcontrib>Wang, Xie</creatorcontrib><creatorcontrib>Yang, Xiu Juan</creatorcontrib><creatorcontrib>Guo, Hua Bing</creatorcontrib><creatorcontrib>Xu, Wen Hao</creatorcontrib><creatorcontrib>Kristiansen, Karsten</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Xu, Yan Chun</creatorcontrib><title>Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species identification of biological samples, including ancient remains. However, it is challenging for these methods to process extremely ancient samples with severe DNA fragmentation and contamination. Here, we applied whole-genome sequencing data from 12 ancient samples with ages ranging from 2.7 to 700 kya to compare different mapping algorithms, and tested different reference databases, mapping similarities and query coverage to explore the best method and mapping parameters that can improve the accuracy of ancient mammal species identification. The selected method and parameters were tested using 152 ancient samples, and 150 of the samples were successfully identified. We further screened the BLAST-based mapping results according to the deamination characteristics of ancient DNA to improve the ability of ancient species identification. Our findings demonstrate a marked improvement to the normal procedures used for ancient species identification, which was achieved through defining the mapping and filtering guidelines to identify true ancient DNA sequences. The guidelines summarized in this study could be valuable in archaeology, paleontology, evolution, and forensic science. For the convenience of the scientific community, we wrote a software script with Perl, called AncSid, which is made available on GitHub.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Archaeology</subject><subject>Contamination</subject><subject>Deamination</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA fragmentation</subject><subject>DNA sequencing</subject><subject>DNA, Mitochondrial</subject><subject>Forensic science</subject><subject>Gene mapping</subject><subject>Genome</subject><subject>Genomes</subject><subject>Goats - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Horses - genetics</subject><subject>Humans</subject><subject>Identification</subject><subject>Laboratories</subject><subject>Mammoths - genetics</subject><subject>Next-generation sequencing</subject><subject>Nucleotide sequence</subject><subject>Paleontology</subject><subject>Ruminants - genetics</subject><subject>Species</subject><subject>Whole genome sequencing</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc1PGzEQxa0KVBBw7LVaqZdetp31V3YvSBRaiBToIeWGZDnecTDK2qm9QeW_76AAAnwZS--npzfzGPvUwDchOvi-xIilAZiAgu4D2-cwEbWUXO28-u-xo1LugJ4EDqA-sj3R8FYqEPvsZjqsc7oPcVnN1-gClmraYxyDD86OIcUq-eokkhDH6tIOg12V6oct2FekXeG_sT6nEHnLzvHvBgkmtzM72kO264nHo6d5wK5__fxzelHPfp9PT09mtZNtM9a8bSmrRLWQvgPU0mpvG249ggduZSuUcj3XTnvfoxbK64VvubNolfPgxAE73vquN4sBe0dZs12ZdQ6DzQ8m2WDeKjHcmmW6N1pPOug0GXx9MsiJNiijGUJxuFrZiGlTDOeKzjURIAn98g69S5scaT1DEF1VdaCIqreUy6mUjP4lTAPmsTrzpjriP7_e4IV-Lkr8B-1jli8</recordid><startdate>20190705</startdate><enddate>20190705</enddate><creator>Lan, Tian Ming</creator><creator>Lin, Yu</creator><creator>Njaramba-Ngatia, Jacob</creator><creator>Guo, Xiao Sen</creator><creator>Li, Ren Gui</creator><creator>Li, Hai Meng</creator><creator>Kumar-Sahu, Sunil</creator><creator>Wang, Xie</creator><creator>Yang, Xiu Juan</creator><creator>Guo, Hua Bing</creator><creator>Xu, Wen Hao</creator><creator>Kristiansen, Karsten</creator><creator>Liu, Huan</creator><creator>Xu, Yan Chun</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3909-0931</orcidid><orcidid>https://orcid.org/0000-0002-6181-939X</orcidid></search><sort><creationdate>20190705</creationdate><title>Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data</title><author>Lan, Tian Ming ; Lin, Yu ; Njaramba-Ngatia, Jacob ; Guo, Xiao Sen ; Li, Ren Gui ; Li, Hai Meng ; Kumar-Sahu, Sunil ; Wang, Xie ; Yang, Xiu Juan ; Guo, Hua Bing ; Xu, Wen Hao ; Kristiansen, Karsten ; Liu, Huan ; Xu, Yan Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-2880734e5b4f90e64a6fa12afe0f02a48355cd26c6ffde635f6bf82caea5cf0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Archaeology</topic><topic>Contamination</topic><topic>Deamination</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA fragmentation</topic><topic>DNA sequencing</topic><topic>DNA, Mitochondrial</topic><topic>Forensic science</topic><topic>Gene mapping</topic><topic>Genome</topic><topic>Genomes</topic><topic>Goats - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Horses - genetics</topic><topic>Humans</topic><topic>Identification</topic><topic>Laboratories</topic><topic>Mammoths - genetics</topic><topic>Next-generation sequencing</topic><topic>Nucleotide sequence</topic><topic>Paleontology</topic><topic>Ruminants - genetics</topic><topic>Species</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Tian Ming</creatorcontrib><creatorcontrib>Lin, Yu</creatorcontrib><creatorcontrib>Njaramba-Ngatia, Jacob</creatorcontrib><creatorcontrib>Guo, Xiao Sen</creatorcontrib><creatorcontrib>Li, Ren Gui</creatorcontrib><creatorcontrib>Li, Hai Meng</creatorcontrib><creatorcontrib>Kumar-Sahu, Sunil</creatorcontrib><creatorcontrib>Wang, Xie</creatorcontrib><creatorcontrib>Yang, Xiu Juan</creatorcontrib><creatorcontrib>Guo, Hua Bing</creatorcontrib><creatorcontrib>Xu, Wen Hao</creatorcontrib><creatorcontrib>Kristiansen, Karsten</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Xu, Yan Chun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Tian Ming</au><au>Lin, Yu</au><au>Njaramba-Ngatia, Jacob</au><au>Guo, Xiao Sen</au><au>Li, Ren Gui</au><au>Li, Hai Meng</au><au>Kumar-Sahu, Sunil</au><au>Wang, Xie</au><au>Yang, Xiu Juan</au><au>Guo, Hua Bing</au><au>Xu, Wen Hao</au><au>Kristiansen, Karsten</au><au>Liu, Huan</au><au>Xu, Yan Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2019-07-05</date><risdate>2019</risdate><volume>10</volume><issue>7</issue><spage>509</spage><pages>509-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species identification of biological samples, including ancient remains. However, it is challenging for these methods to process extremely ancient samples with severe DNA fragmentation and contamination. Here, we applied whole-genome sequencing data from 12 ancient samples with ages ranging from 2.7 to 700 kya to compare different mapping algorithms, and tested different reference databases, mapping similarities and query coverage to explore the best method and mapping parameters that can improve the accuracy of ancient mammal species identification. The selected method and parameters were tested using 152 ancient samples, and 150 of the samples were successfully identified. We further screened the BLAST-based mapping results according to the deamination characteristics of ancient DNA to improve the ability of ancient species identification. Our findings demonstrate a marked improvement to the normal procedures used for ancient species identification, which was achieved through defining the mapping and filtering guidelines to identify true ancient DNA sequences. The guidelines summarized in this study could be valuable in archaeology, paleontology, evolution, and forensic science. For the convenience of the scientific community, we wrote a software script with Perl, called AncSid, which is made available on GitHub.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31284503</pmid><doi>10.3390/genes10070509</doi><orcidid>https://orcid.org/0000-0003-3909-0931</orcidid><orcidid>https://orcid.org/0000-0002-6181-939X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2019-07, Vol.10 (7), p.509
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679096
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Algorithms
Animals
Archaeology
Contamination
Deamination
Deoxyribonucleic acid
DNA
DNA fragmentation
DNA sequencing
DNA, Mitochondrial
Forensic science
Gene mapping
Genome
Genomes
Goats - genetics
High-Throughput Nucleotide Sequencing
Horses - genetics
Humans
Identification
Laboratories
Mammoths - genetics
Next-generation sequencing
Nucleotide sequence
Paleontology
Ruminants - genetics
Species
Whole genome sequencing
title Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Species%20Identification%20of%20Ancient%20Mammals%20Based%20on%20Next-Generation%20Sequencing%20Data&rft.jtitle=Genes&rft.au=Lan,%20Tian%20Ming&rft.date=2019-07-05&rft.volume=10&rft.issue=7&rft.spage=509&rft.pages=509-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes10070509&rft_dat=%3Cproquest_pubme%3E2548455905%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548455905&rft_id=info:pmid/31284503&rfr_iscdi=true