Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data
The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species id...
Gespeichert in:
Veröffentlicht in: | Genes 2019-07, Vol.10 (7), p.509 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 509 |
container_title | Genes |
container_volume | 10 |
creator | Lan, Tian Ming Lin, Yu Njaramba-Ngatia, Jacob Guo, Xiao Sen Li, Ren Gui Li, Hai Meng Kumar-Sahu, Sunil Wang, Xie Yang, Xiu Juan Guo, Hua Bing Xu, Wen Hao Kristiansen, Karsten Liu, Huan Xu, Yan Chun |
description | The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species identification of biological samples, including ancient remains. However, it is challenging for these methods to process extremely ancient samples with severe DNA fragmentation and contamination. Here, we applied whole-genome sequencing data from 12 ancient samples with ages ranging from 2.7 to 700 kya to compare different mapping algorithms, and tested different reference databases, mapping similarities and query coverage to explore the best method and mapping parameters that can improve the accuracy of ancient mammal species identification. The selected method and parameters were tested using 152 ancient samples, and 150 of the samples were successfully identified. We further screened the BLAST-based mapping results according to the deamination characteristics of ancient DNA to improve the ability of ancient species identification. Our findings demonstrate a marked improvement to the normal procedures used for ancient species identification, which was achieved through defining the mapping and filtering guidelines to identify true ancient DNA sequences. The guidelines summarized in this study could be valuable in archaeology, paleontology, evolution, and forensic science. For the convenience of the scientific community, we wrote a software script with Perl, called AncSid, which is made available on GitHub. |
doi_str_mv | 10.3390/genes10070509 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548455905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-2880734e5b4f90e64a6fa12afe0f02a48355cd26c6ffde635f6bf82caea5cf0c3</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa0KVBBw7LVaqZdetp31V3YvSBRaiBToIeWGZDnecTDK2qm9QeW_76AAAnwZS--npzfzGPvUwDchOvi-xIilAZiAgu4D2-cwEbWUXO28-u-xo1LugJ4EDqA-sj3R8FYqEPvsZjqsc7oPcVnN1-gClmraYxyDD86OIcUq-eokkhDH6tIOg12V6oct2FekXeG_sT6nEHnLzvHvBgkmtzM72kO264nHo6d5wK5__fxzelHPfp9PT09mtZNtM9a8bSmrRLWQvgPU0mpvG249ggduZSuUcj3XTnvfoxbK64VvubNolfPgxAE73vquN4sBe0dZs12ZdQ6DzQ8m2WDeKjHcmmW6N1pPOug0GXx9MsiJNiijGUJxuFrZiGlTDOeKzjURIAn98g69S5scaT1DEF1VdaCIqreUy6mUjP4lTAPmsTrzpjriP7_e4IV-Lkr8B-1jli8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548455905</pqid></control><display><type>article</type><title>Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Lan, Tian Ming ; Lin, Yu ; Njaramba-Ngatia, Jacob ; Guo, Xiao Sen ; Li, Ren Gui ; Li, Hai Meng ; Kumar-Sahu, Sunil ; Wang, Xie ; Yang, Xiu Juan ; Guo, Hua Bing ; Xu, Wen Hao ; Kristiansen, Karsten ; Liu, Huan ; Xu, Yan Chun</creator><creatorcontrib>Lan, Tian Ming ; Lin, Yu ; Njaramba-Ngatia, Jacob ; Guo, Xiao Sen ; Li, Ren Gui ; Li, Hai Meng ; Kumar-Sahu, Sunil ; Wang, Xie ; Yang, Xiu Juan ; Guo, Hua Bing ; Xu, Wen Hao ; Kristiansen, Karsten ; Liu, Huan ; Xu, Yan Chun</creatorcontrib><description>The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species identification of biological samples, including ancient remains. However, it is challenging for these methods to process extremely ancient samples with severe DNA fragmentation and contamination. Here, we applied whole-genome sequencing data from 12 ancient samples with ages ranging from 2.7 to 700 kya to compare different mapping algorithms, and tested different reference databases, mapping similarities and query coverage to explore the best method and mapping parameters that can improve the accuracy of ancient mammal species identification. The selected method and parameters were tested using 152 ancient samples, and 150 of the samples were successfully identified. We further screened the BLAST-based mapping results according to the deamination characteristics of ancient DNA to improve the ability of ancient species identification. Our findings demonstrate a marked improvement to the normal procedures used for ancient species identification, which was achieved through defining the mapping and filtering guidelines to identify true ancient DNA sequences. The guidelines summarized in this study could be valuable in archaeology, paleontology, evolution, and forensic science. For the convenience of the scientific community, we wrote a software script with Perl, called AncSid, which is made available on GitHub.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes10070509</identifier><identifier>PMID: 31284503</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Animals ; Archaeology ; Contamination ; Deamination ; Deoxyribonucleic acid ; DNA ; DNA fragmentation ; DNA sequencing ; DNA, Mitochondrial ; Forensic science ; Gene mapping ; Genome ; Genomes ; Goats - genetics ; High-Throughput Nucleotide Sequencing ; Horses - genetics ; Humans ; Identification ; Laboratories ; Mammoths - genetics ; Next-generation sequencing ; Nucleotide sequence ; Paleontology ; Ruminants - genetics ; Species ; Whole genome sequencing</subject><ispartof>Genes, 2019-07, Vol.10 (7), p.509</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-2880734e5b4f90e64a6fa12afe0f02a48355cd26c6ffde635f6bf82caea5cf0c3</citedby><cites>FETCH-LOGICAL-c481t-2880734e5b4f90e64a6fa12afe0f02a48355cd26c6ffde635f6bf82caea5cf0c3</cites><orcidid>0000-0003-3909-0931 ; 0000-0002-6181-939X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679096/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679096/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31284503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Tian Ming</creatorcontrib><creatorcontrib>Lin, Yu</creatorcontrib><creatorcontrib>Njaramba-Ngatia, Jacob</creatorcontrib><creatorcontrib>Guo, Xiao Sen</creatorcontrib><creatorcontrib>Li, Ren Gui</creatorcontrib><creatorcontrib>Li, Hai Meng</creatorcontrib><creatorcontrib>Kumar-Sahu, Sunil</creatorcontrib><creatorcontrib>Wang, Xie</creatorcontrib><creatorcontrib>Yang, Xiu Juan</creatorcontrib><creatorcontrib>Guo, Hua Bing</creatorcontrib><creatorcontrib>Xu, Wen Hao</creatorcontrib><creatorcontrib>Kristiansen, Karsten</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Xu, Yan Chun</creatorcontrib><title>Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species identification of biological samples, including ancient remains. However, it is challenging for these methods to process extremely ancient samples with severe DNA fragmentation and contamination. Here, we applied whole-genome sequencing data from 12 ancient samples with ages ranging from 2.7 to 700 kya to compare different mapping algorithms, and tested different reference databases, mapping similarities and query coverage to explore the best method and mapping parameters that can improve the accuracy of ancient mammal species identification. The selected method and parameters were tested using 152 ancient samples, and 150 of the samples were successfully identified. We further screened the BLAST-based mapping results according to the deamination characteristics of ancient DNA to improve the ability of ancient species identification. Our findings demonstrate a marked improvement to the normal procedures used for ancient species identification, which was achieved through defining the mapping and filtering guidelines to identify true ancient DNA sequences. The guidelines summarized in this study could be valuable in archaeology, paleontology, evolution, and forensic science. For the convenience of the scientific community, we wrote a software script with Perl, called AncSid, which is made available on GitHub.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Archaeology</subject><subject>Contamination</subject><subject>Deamination</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA fragmentation</subject><subject>DNA sequencing</subject><subject>DNA, Mitochondrial</subject><subject>Forensic science</subject><subject>Gene mapping</subject><subject>Genome</subject><subject>Genomes</subject><subject>Goats - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Horses - genetics</subject><subject>Humans</subject><subject>Identification</subject><subject>Laboratories</subject><subject>Mammoths - genetics</subject><subject>Next-generation sequencing</subject><subject>Nucleotide sequence</subject><subject>Paleontology</subject><subject>Ruminants - genetics</subject><subject>Species</subject><subject>Whole genome sequencing</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc1PGzEQxa0KVBBw7LVaqZdetp31V3YvSBRaiBToIeWGZDnecTDK2qm9QeW_76AAAnwZS--npzfzGPvUwDchOvi-xIilAZiAgu4D2-cwEbWUXO28-u-xo1LugJ4EDqA-sj3R8FYqEPvsZjqsc7oPcVnN1-gClmraYxyDD86OIcUq-eokkhDH6tIOg12V6oct2FekXeG_sT6nEHnLzvHvBgkmtzM72kO264nHo6d5wK5__fxzelHPfp9PT09mtZNtM9a8bSmrRLWQvgPU0mpvG249ggduZSuUcj3XTnvfoxbK64VvubNolfPgxAE73vquN4sBe0dZs12ZdQ6DzQ8m2WDeKjHcmmW6N1pPOug0GXx9MsiJNiijGUJxuFrZiGlTDOeKzjURIAn98g69S5scaT1DEF1VdaCIqreUy6mUjP4lTAPmsTrzpjriP7_e4IV-Lkr8B-1jli8</recordid><startdate>20190705</startdate><enddate>20190705</enddate><creator>Lan, Tian Ming</creator><creator>Lin, Yu</creator><creator>Njaramba-Ngatia, Jacob</creator><creator>Guo, Xiao Sen</creator><creator>Li, Ren Gui</creator><creator>Li, Hai Meng</creator><creator>Kumar-Sahu, Sunil</creator><creator>Wang, Xie</creator><creator>Yang, Xiu Juan</creator><creator>Guo, Hua Bing</creator><creator>Xu, Wen Hao</creator><creator>Kristiansen, Karsten</creator><creator>Liu, Huan</creator><creator>Xu, Yan Chun</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3909-0931</orcidid><orcidid>https://orcid.org/0000-0002-6181-939X</orcidid></search><sort><creationdate>20190705</creationdate><title>Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data</title><author>Lan, Tian Ming ; Lin, Yu ; Njaramba-Ngatia, Jacob ; Guo, Xiao Sen ; Li, Ren Gui ; Li, Hai Meng ; Kumar-Sahu, Sunil ; Wang, Xie ; Yang, Xiu Juan ; Guo, Hua Bing ; Xu, Wen Hao ; Kristiansen, Karsten ; Liu, Huan ; Xu, Yan Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-2880734e5b4f90e64a6fa12afe0f02a48355cd26c6ffde635f6bf82caea5cf0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Archaeology</topic><topic>Contamination</topic><topic>Deamination</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA fragmentation</topic><topic>DNA sequencing</topic><topic>DNA, Mitochondrial</topic><topic>Forensic science</topic><topic>Gene mapping</topic><topic>Genome</topic><topic>Genomes</topic><topic>Goats - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Horses - genetics</topic><topic>Humans</topic><topic>Identification</topic><topic>Laboratories</topic><topic>Mammoths - genetics</topic><topic>Next-generation sequencing</topic><topic>Nucleotide sequence</topic><topic>Paleontology</topic><topic>Ruminants - genetics</topic><topic>Species</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Tian Ming</creatorcontrib><creatorcontrib>Lin, Yu</creatorcontrib><creatorcontrib>Njaramba-Ngatia, Jacob</creatorcontrib><creatorcontrib>Guo, Xiao Sen</creatorcontrib><creatorcontrib>Li, Ren Gui</creatorcontrib><creatorcontrib>Li, Hai Meng</creatorcontrib><creatorcontrib>Kumar-Sahu, Sunil</creatorcontrib><creatorcontrib>Wang, Xie</creatorcontrib><creatorcontrib>Yang, Xiu Juan</creatorcontrib><creatorcontrib>Guo, Hua Bing</creatorcontrib><creatorcontrib>Xu, Wen Hao</creatorcontrib><creatorcontrib>Kristiansen, Karsten</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Xu, Yan Chun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Tian Ming</au><au>Lin, Yu</au><au>Njaramba-Ngatia, Jacob</au><au>Guo, Xiao Sen</au><au>Li, Ren Gui</au><au>Li, Hai Meng</au><au>Kumar-Sahu, Sunil</au><au>Wang, Xie</au><au>Yang, Xiu Juan</au><au>Guo, Hua Bing</au><au>Xu, Wen Hao</au><au>Kristiansen, Karsten</au><au>Liu, Huan</au><au>Xu, Yan Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2019-07-05</date><risdate>2019</risdate><volume>10</volume><issue>7</issue><spage>509</spage><pages>509-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species identification of biological samples, including ancient remains. However, it is challenging for these methods to process extremely ancient samples with severe DNA fragmentation and contamination. Here, we applied whole-genome sequencing data from 12 ancient samples with ages ranging from 2.7 to 700 kya to compare different mapping algorithms, and tested different reference databases, mapping similarities and query coverage to explore the best method and mapping parameters that can improve the accuracy of ancient mammal species identification. The selected method and parameters were tested using 152 ancient samples, and 150 of the samples were successfully identified. We further screened the BLAST-based mapping results according to the deamination characteristics of ancient DNA to improve the ability of ancient species identification. Our findings demonstrate a marked improvement to the normal procedures used for ancient species identification, which was achieved through defining the mapping and filtering guidelines to identify true ancient DNA sequences. The guidelines summarized in this study could be valuable in archaeology, paleontology, evolution, and forensic science. For the convenience of the scientific community, we wrote a software script with Perl, called AncSid, which is made available on GitHub.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31284503</pmid><doi>10.3390/genes10070509</doi><orcidid>https://orcid.org/0000-0003-3909-0931</orcidid><orcidid>https://orcid.org/0000-0002-6181-939X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4425 |
ispartof | Genes, 2019-07, Vol.10 (7), p.509 |
issn | 2073-4425 2073-4425 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679096 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Algorithms Animals Archaeology Contamination Deamination Deoxyribonucleic acid DNA DNA fragmentation DNA sequencing DNA, Mitochondrial Forensic science Gene mapping Genome Genomes Goats - genetics High-Throughput Nucleotide Sequencing Horses - genetics Humans Identification Laboratories Mammoths - genetics Next-generation sequencing Nucleotide sequence Paleontology Ruminants - genetics Species Whole genome sequencing |
title | Improving Species Identification of Ancient Mammals Based on Next-Generation Sequencing Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Species%20Identification%20of%20Ancient%20Mammals%20Based%20on%20Next-Generation%20Sequencing%20Data&rft.jtitle=Genes&rft.au=Lan,%20Tian%20Ming&rft.date=2019-07-05&rft.volume=10&rft.issue=7&rft.spage=509&rft.pages=509-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes10070509&rft_dat=%3Cproquest_pubme%3E2548455905%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548455905&rft_id=info:pmid/31284503&rfr_iscdi=true |