KDM2A-dependent reduction of rRNA transcription on glucose starvation requires HP1 in cells, including triple-negative breast cancer cells

Triple-negative breast cancer (TNBC) is very aggressive and lacks specific therapeutic targets. Ribosome RNAs (rRNAs) are central components of ribosomes and transcribed in nucleoli, and the level of rRNA transcription greatly affects ribosome production and cell proliferation. We have reported that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget 2019-07, Vol.10 (46), p.4743-4760
Hauptverfasser: Okamoto, Kengo, Tanaka, Yuji, Ogasawara, Sachiko, Obuse, Chikashi, Nakayama, Jun-Ichi, Yano, Hirohisa, Tsuneoka, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4760
container_issue 46
container_start_page 4743
container_title Oncotarget
container_volume 10
creator Okamoto, Kengo
Tanaka, Yuji
Ogasawara, Sachiko
Obuse, Chikashi
Nakayama, Jun-Ichi
Yano, Hirohisa
Tsuneoka, Makoto
description Triple-negative breast cancer (TNBC) is very aggressive and lacks specific therapeutic targets. Ribosome RNAs (rRNAs) are central components of ribosomes and transcribed in nucleoli, and the level of rRNA transcription greatly affects ribosome production and cell proliferation. We have reported that an epigenetic protein, KDM2A, exists in nucleoli and reduces rRNA transcription on glucose starvation. However, the molecular mechanism is still unclear. The purpose of this study is to examine the KDM2A-dependent regulation mechanism of rRNA transcription. In this study, we turned our attention to the nucleolar accumulation of KDM2A. We found that KDM2A had multiple regions for its nucleolar localization, and one of the regions was directly bound by heterochromatin protein 1γ (HP1γ) using valine 801 in the LxVxL motif of KDM2A. A knockdown of HP1γ or a point mutation of valine 801 in KDM2A decreased the nucleolar accumulation of KDM2A, and suppressed the reduction of rRNA transcription on glucose starvation. These results uncovered a novel function of HP1γ: the regulation of rRNA transcription, and suggested that HP1γ stimulates the nucleolar accumulation of KDM2A to support the KDM2A-dependent regulation of rRNA transcription. HP1γ was expressed in cancer cells in all breast carcinoma tissues examined, including TNBC tissues. A knockdown of HP1γ in a TNBC cell line, MDA-MB-231 cells, reduced the nucleolar accumulation of KDM2A, and suppressed the reductions of rRNA transcription and cell proliferation on glucose starvation. These results suggest that the KDM2A-dependent regulation of rRNA transcription requires HP1γ, and thus may be applicable to the treatment of TNBC.
doi_str_mv 10.18632/oncotarget.27092
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6677663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273779410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3802-f02320384232d9927d14df18c2425d392ab9ed78eacc9fc2d9cca803f0af5a913</originalsourceid><addsrcrecordid>eNpVUU1v1DAQtRAVrUp_ABfkIwdS_JHE8QVp1UKL6AdCcLa840kwytqpnazEX-BX4-6WUuYyo5n33szoEfKKs1PetVK8iwHibNOA86lQTItn5IjrWleiaeTzJ_UhOcn5JyvR1KoT-gU5lLzmsuPtEfn9-fxarCqHEwaHYaYJ3QKzj4HGnqavNys6JxsyJD_tu4EO4wIxI81l-9buugnvFp8w08svnPpAAccxvy0VjIvzYSgifhqxCjgUwhbpOqHNMwUbANMe_pIc9HbMePKQj8n3jx--nV1WV7cXn85WVxXIjomqZ0IKJru6JKe1UI7XrucdiFo0Tmph1xqd6tAC6B4KBsB2TPbM9o3VXB6T93vdaVlv0EH5OtnRTMlvbPplovXm_0nwP8wQt6ZtlWpbWQTePAikeLdgns3G5_sXbMC4ZCOEkkrpmrMC5XsopJhzwv5xDWdmZ6P5Z6PZ2Vg4r5_e98j4a5r8Ax74nvs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273779410</pqid></control><display><type>article</type><title>KDM2A-dependent reduction of rRNA transcription on glucose starvation requires HP1 in cells, including triple-negative breast cancer cells</title><source>PubMed Central</source><source>Free E- Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Okamoto, Kengo ; Tanaka, Yuji ; Ogasawara, Sachiko ; Obuse, Chikashi ; Nakayama, Jun-Ichi ; Yano, Hirohisa ; Tsuneoka, Makoto</creator><creatorcontrib>Okamoto, Kengo ; Tanaka, Yuji ; Ogasawara, Sachiko ; Obuse, Chikashi ; Nakayama, Jun-Ichi ; Yano, Hirohisa ; Tsuneoka, Makoto</creatorcontrib><description>Triple-negative breast cancer (TNBC) is very aggressive and lacks specific therapeutic targets. Ribosome RNAs (rRNAs) are central components of ribosomes and transcribed in nucleoli, and the level of rRNA transcription greatly affects ribosome production and cell proliferation. We have reported that an epigenetic protein, KDM2A, exists in nucleoli and reduces rRNA transcription on glucose starvation. However, the molecular mechanism is still unclear. The purpose of this study is to examine the KDM2A-dependent regulation mechanism of rRNA transcription. In this study, we turned our attention to the nucleolar accumulation of KDM2A. We found that KDM2A had multiple regions for its nucleolar localization, and one of the regions was directly bound by heterochromatin protein 1γ (HP1γ) using valine 801 in the LxVxL motif of KDM2A. A knockdown of HP1γ or a point mutation of valine 801 in KDM2A decreased the nucleolar accumulation of KDM2A, and suppressed the reduction of rRNA transcription on glucose starvation. These results uncovered a novel function of HP1γ: the regulation of rRNA transcription, and suggested that HP1γ stimulates the nucleolar accumulation of KDM2A to support the KDM2A-dependent regulation of rRNA transcription. HP1γ was expressed in cancer cells in all breast carcinoma tissues examined, including TNBC tissues. A knockdown of HP1γ in a TNBC cell line, MDA-MB-231 cells, reduced the nucleolar accumulation of KDM2A, and suppressed the reductions of rRNA transcription and cell proliferation on glucose starvation. These results suggest that the KDM2A-dependent regulation of rRNA transcription requires HP1γ, and thus may be applicable to the treatment of TNBC.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.27092</identifier><identifier>PMID: 31413816</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Research Paper</subject><ispartof>Oncotarget, 2019-07, Vol.10 (46), p.4743-4760</ispartof><rights>Copyright: © 2019 Okamoto et al. 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3802-f02320384232d9927d14df18c2425d392ab9ed78eacc9fc2d9cca803f0af5a913</citedby><cites>FETCH-LOGICAL-c3802-f02320384232d9927d14df18c2425d392ab9ed78eacc9fc2d9cca803f0af5a913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677663/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677663/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31413816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okamoto, Kengo</creatorcontrib><creatorcontrib>Tanaka, Yuji</creatorcontrib><creatorcontrib>Ogasawara, Sachiko</creatorcontrib><creatorcontrib>Obuse, Chikashi</creatorcontrib><creatorcontrib>Nakayama, Jun-Ichi</creatorcontrib><creatorcontrib>Yano, Hirohisa</creatorcontrib><creatorcontrib>Tsuneoka, Makoto</creatorcontrib><title>KDM2A-dependent reduction of rRNA transcription on glucose starvation requires HP1 in cells, including triple-negative breast cancer cells</title><title>Oncotarget</title><addtitle>Oncotarget</addtitle><description>Triple-negative breast cancer (TNBC) is very aggressive and lacks specific therapeutic targets. Ribosome RNAs (rRNAs) are central components of ribosomes and transcribed in nucleoli, and the level of rRNA transcription greatly affects ribosome production and cell proliferation. We have reported that an epigenetic protein, KDM2A, exists in nucleoli and reduces rRNA transcription on glucose starvation. However, the molecular mechanism is still unclear. The purpose of this study is to examine the KDM2A-dependent regulation mechanism of rRNA transcription. In this study, we turned our attention to the nucleolar accumulation of KDM2A. We found that KDM2A had multiple regions for its nucleolar localization, and one of the regions was directly bound by heterochromatin protein 1γ (HP1γ) using valine 801 in the LxVxL motif of KDM2A. A knockdown of HP1γ or a point mutation of valine 801 in KDM2A decreased the nucleolar accumulation of KDM2A, and suppressed the reduction of rRNA transcription on glucose starvation. These results uncovered a novel function of HP1γ: the regulation of rRNA transcription, and suggested that HP1γ stimulates the nucleolar accumulation of KDM2A to support the KDM2A-dependent regulation of rRNA transcription. HP1γ was expressed in cancer cells in all breast carcinoma tissues examined, including TNBC tissues. A knockdown of HP1γ in a TNBC cell line, MDA-MB-231 cells, reduced the nucleolar accumulation of KDM2A, and suppressed the reductions of rRNA transcription and cell proliferation on glucose starvation. These results suggest that the KDM2A-dependent regulation of rRNA transcription requires HP1γ, and thus may be applicable to the treatment of TNBC.</description><subject>Research Paper</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUU1v1DAQtRAVrUp_ABfkIwdS_JHE8QVp1UKL6AdCcLa840kwytqpnazEX-BX4-6WUuYyo5n33szoEfKKs1PetVK8iwHibNOA86lQTItn5IjrWleiaeTzJ_UhOcn5JyvR1KoT-gU5lLzmsuPtEfn9-fxarCqHEwaHYaYJ3QKzj4HGnqavNys6JxsyJD_tu4EO4wIxI81l-9buugnvFp8w08svnPpAAccxvy0VjIvzYSgifhqxCjgUwhbpOqHNMwUbANMe_pIc9HbMePKQj8n3jx--nV1WV7cXn85WVxXIjomqZ0IKJru6JKe1UI7XrucdiFo0Tmph1xqd6tAC6B4KBsB2TPbM9o3VXB6T93vdaVlv0EH5OtnRTMlvbPplovXm_0nwP8wQt6ZtlWpbWQTePAikeLdgns3G5_sXbMC4ZCOEkkrpmrMC5XsopJhzwv5xDWdmZ6P5Z6PZ2Vg4r5_e98j4a5r8Ax74nvs</recordid><startdate>20190730</startdate><enddate>20190730</enddate><creator>Okamoto, Kengo</creator><creator>Tanaka, Yuji</creator><creator>Ogasawara, Sachiko</creator><creator>Obuse, Chikashi</creator><creator>Nakayama, Jun-Ichi</creator><creator>Yano, Hirohisa</creator><creator>Tsuneoka, Makoto</creator><general>Impact Journals LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190730</creationdate><title>KDM2A-dependent reduction of rRNA transcription on glucose starvation requires HP1 in cells, including triple-negative breast cancer cells</title><author>Okamoto, Kengo ; Tanaka, Yuji ; Ogasawara, Sachiko ; Obuse, Chikashi ; Nakayama, Jun-Ichi ; Yano, Hirohisa ; Tsuneoka, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3802-f02320384232d9927d14df18c2425d392ab9ed78eacc9fc2d9cca803f0af5a913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Research Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Okamoto, Kengo</creatorcontrib><creatorcontrib>Tanaka, Yuji</creatorcontrib><creatorcontrib>Ogasawara, Sachiko</creatorcontrib><creatorcontrib>Obuse, Chikashi</creatorcontrib><creatorcontrib>Nakayama, Jun-Ichi</creatorcontrib><creatorcontrib>Yano, Hirohisa</creatorcontrib><creatorcontrib>Tsuneoka, Makoto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncotarget</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okamoto, Kengo</au><au>Tanaka, Yuji</au><au>Ogasawara, Sachiko</au><au>Obuse, Chikashi</au><au>Nakayama, Jun-Ichi</au><au>Yano, Hirohisa</au><au>Tsuneoka, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KDM2A-dependent reduction of rRNA transcription on glucose starvation requires HP1 in cells, including triple-negative breast cancer cells</atitle><jtitle>Oncotarget</jtitle><addtitle>Oncotarget</addtitle><date>2019-07-30</date><risdate>2019</risdate><volume>10</volume><issue>46</issue><spage>4743</spage><epage>4760</epage><pages>4743-4760</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>Triple-negative breast cancer (TNBC) is very aggressive and lacks specific therapeutic targets. Ribosome RNAs (rRNAs) are central components of ribosomes and transcribed in nucleoli, and the level of rRNA transcription greatly affects ribosome production and cell proliferation. We have reported that an epigenetic protein, KDM2A, exists in nucleoli and reduces rRNA transcription on glucose starvation. However, the molecular mechanism is still unclear. The purpose of this study is to examine the KDM2A-dependent regulation mechanism of rRNA transcription. In this study, we turned our attention to the nucleolar accumulation of KDM2A. We found that KDM2A had multiple regions for its nucleolar localization, and one of the regions was directly bound by heterochromatin protein 1γ (HP1γ) using valine 801 in the LxVxL motif of KDM2A. A knockdown of HP1γ or a point mutation of valine 801 in KDM2A decreased the nucleolar accumulation of KDM2A, and suppressed the reduction of rRNA transcription on glucose starvation. These results uncovered a novel function of HP1γ: the regulation of rRNA transcription, and suggested that HP1γ stimulates the nucleolar accumulation of KDM2A to support the KDM2A-dependent regulation of rRNA transcription. HP1γ was expressed in cancer cells in all breast carcinoma tissues examined, including TNBC tissues. A knockdown of HP1γ in a TNBC cell line, MDA-MB-231 cells, reduced the nucleolar accumulation of KDM2A, and suppressed the reductions of rRNA transcription and cell proliferation on glucose starvation. These results suggest that the KDM2A-dependent regulation of rRNA transcription requires HP1γ, and thus may be applicable to the treatment of TNBC.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>31413816</pmid><doi>10.18632/oncotarget.27092</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-2553
ispartof Oncotarget, 2019-07, Vol.10 (46), p.4743-4760
issn 1949-2553
1949-2553
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6677663
source PubMed Central; Free E- Journals; EZB Electronic Journals Library; PubMed Central Open Access
subjects Research Paper
title KDM2A-dependent reduction of rRNA transcription on glucose starvation requires HP1 in cells, including triple-negative breast cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KDM2A-dependent%20reduction%20of%20rRNA%20transcription%20on%20glucose%20starvation%20requires%20HP1%20in%20cells,%20including%20triple-negative%20breast%20cancer%20cells&rft.jtitle=Oncotarget&rft.au=Okamoto,%20Kengo&rft.date=2019-07-30&rft.volume=10&rft.issue=46&rft.spage=4743&rft.epage=4760&rft.pages=4743-4760&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.27092&rft_dat=%3Cproquest_pubme%3E2273779410%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273779410&rft_id=info:pmid/31413816&rfr_iscdi=true