Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids
Key message Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development. The success or failure of reproductive outcomes...
Gespeichert in:
Veröffentlicht in: | Plant reproduction 2019-09, Vol.32 (3), p.275-289 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 3 |
container_start_page | 275 |
container_title | Plant reproduction |
container_volume | 32 |
creator | Duszynska, Dorota Vilhjalmsson, Bjarni Castillo Bravo, Rosa Swamidatta, Sandesh Juenger, Thomas E. Donoghue, Mark T. A. Comte, Aurélie Nordborg, Magnus Sharbel, Timothy F. Brychkova, Galina McKeown, Peter C. Spillane, Charles |
description | Key message
Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development.
The success or failure of reproductive outcomes from intra-species crosses between plants of different ploidy levels is an important factor in flowering plant evolution and crop breeding. However, the effects of inter-ploidy cross directions on F1 hybrid offspring fitness are poorly understood. In
Arabidopsis thaliana
, hybridization between diploid and tetraploid plants can produce viable F1 triploid plants. When selfed, such F1 triploid plants act as aneuploid gamete production “machines” where the vast majority of gametes generated are aneuploid which, following sexual reproduction, can generate aneuploid swarms of F2 progeny (Henry et al.
2009
). There is potential for some aneuploids to cause gametophyte abortion and/or F2 seed abortion (Henry et al.
2009
). In this study, we analyse the reproductive success of 178 self-fertilized inter-accession F1 hybrid triploids and demonstrate that the proportions of aborted or normally developed F2 seeds from the selfed F1 triploids depend upon a combination of natural variation and cross direction, with strong interaction between these factors. Single-seed ploidy analysis indicates that the embryonic DNA content of phenotypically normal F2 seeds is highly variable and that these DNA content distributions are also affected by genotype and cross direction. Notably, genetically identical reciprocal F1 hybrid triploids display grandparent-of-origin effects on F2 seed set, and hence on the ability to tolerate aneuploidy in F2 seed. There are differences between reciprocal F1 hybrid triploids regarding the proportions of normal and aborted F2 seeds generated, and also for the DNA content averages and distributions of the F2 seeds. To identify genetic variation for tolerance of aneuploidy in F2 seeds, we carried out a GWAS which identified two SNPs, termed
MOT
and
POT
, which represent candidate loci for genetic control of the proportion of normal F2 seeds obtained from selfed F1 triploids. Parental and grandparental effects on F2 seeds obtained from selfed F1 triploids can have transgenerational consequences for asymmetric gene flow, emergence of novel genotypes in polyploid populations, and for control of F2 seed set in triploid crops. |
doi_str_mv | 10.1007/s00497-019-00369-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6675909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595288598</galeid><sourcerecordid>A595288598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-9ea7c5d4694c669924a1d69e60e182eaec39fe17069bfb04290b1e26e96a19043</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAltjAIuX4Eme8QRpVDK1UCQnK2nLikxlXGTvYScU8BO-MO2kHhgWyJV_Od37bx39RvKZwQQHqDwlAqLoEqkoALlUpnxWnjCpR1krS54d5xU-K85TuAIACpxWIl8UJBwWcLcRp8es2Gp_W6DGa0QVveoJdh-2YSOiI8yPGcuiDszvSxpASsS7maCZJ7hGHGOw0r423ZMVIQrTE4j32YdiiHx90ltE0zoYhuUTGjemd8YasKNnsmugsGaPbn5FeFS860yc8fxzPiu-rT7eXV-XNl8_Xl8ubsq1EPZYKTd1WVkglWimVYsJQKxVKQLpgaLDlqkNag1RN14BgChqKTKKShioQ_Kz4OOsOU7NF2-ZrRtPrIbqtiTsdjNPHEe82eh3utZR1pUBlgXePAjH8mDCNeutSi31vPIYp6Vx8WTHBOGT07T_oXZhiLnSmmKyl5EryTF3M1Nr0qJ3vQj63zc3i1rXBY-fy_rJSFVssKrXICe-PEjIz4s9xbaaU9PW3r8csm9n9F0bsDi-loB_cpGc36ewmvXeTljnpzd81OqQ8eScDfAZSDvk1xj8P-4_sb2AN1sU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267663963</pqid></control><display><type>article</type><title>Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Duszynska, Dorota ; Vilhjalmsson, Bjarni ; Castillo Bravo, Rosa ; Swamidatta, Sandesh ; Juenger, Thomas E. ; Donoghue, Mark T. A. ; Comte, Aurélie ; Nordborg, Magnus ; Sharbel, Timothy F. ; Brychkova, Galina ; McKeown, Peter C. ; Spillane, Charles</creator><creatorcontrib>Duszynska, Dorota ; Vilhjalmsson, Bjarni ; Castillo Bravo, Rosa ; Swamidatta, Sandesh ; Juenger, Thomas E. ; Donoghue, Mark T. A. ; Comte, Aurélie ; Nordborg, Magnus ; Sharbel, Timothy F. ; Brychkova, Galina ; McKeown, Peter C. ; Spillane, Charles</creatorcontrib><description>Key message
Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development.
The success or failure of reproductive outcomes from intra-species crosses between plants of different ploidy levels is an important factor in flowering plant evolution and crop breeding. However, the effects of inter-ploidy cross directions on F1 hybrid offspring fitness are poorly understood. In
Arabidopsis thaliana
, hybridization between diploid and tetraploid plants can produce viable F1 triploid plants. When selfed, such F1 triploid plants act as aneuploid gamete production “machines” where the vast majority of gametes generated are aneuploid which, following sexual reproduction, can generate aneuploid swarms of F2 progeny (Henry et al.
2009
). There is potential for some aneuploids to cause gametophyte abortion and/or F2 seed abortion (Henry et al.
2009
). In this study, we analyse the reproductive success of 178 self-fertilized inter-accession F1 hybrid triploids and demonstrate that the proportions of aborted or normally developed F2 seeds from the selfed F1 triploids depend upon a combination of natural variation and cross direction, with strong interaction between these factors. Single-seed ploidy analysis indicates that the embryonic DNA content of phenotypically normal F2 seeds is highly variable and that these DNA content distributions are also affected by genotype and cross direction. Notably, genetically identical reciprocal F1 hybrid triploids display grandparent-of-origin effects on F2 seed set, and hence on the ability to tolerate aneuploidy in F2 seed. There are differences between reciprocal F1 hybrid triploids regarding the proportions of normal and aborted F2 seeds generated, and also for the DNA content averages and distributions of the F2 seeds. To identify genetic variation for tolerance of aneuploidy in F2 seeds, we carried out a GWAS which identified two SNPs, termed
MOT
and
POT
, which represent candidate loci for genetic control of the proportion of normal F2 seeds obtained from selfed F1 triploids. Parental and grandparental effects on F2 seeds obtained from selfed F1 triploids can have transgenerational consequences for asymmetric gene flow, emergence of novel genotypes in polyploid populations, and for control of F2 seed set in triploid crops.</description><identifier>ISSN: 2194-7953</identifier><identifier>ISSN: 2194-7961</identifier><identifier>EISSN: 2194-7961</identifier><identifier>DOI: 10.1007/s00497-019-00369-6</identifier><identifier>PMID: 30903284</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abortion ; Agriculture ; Analysis ; Aneuploidy ; Animal reproduction ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - physiology ; Arabidopsis thaliana ; Biological Evolution ; Biomedical and Life Sciences ; Breeding success ; Cell Biology ; Deoxyribonucleic acid ; Diploidy ; DNA ; Embryos ; Epigenetic inheritance ; Epigenetics ; Epigenomics ; Evolution ; Fitness ; Flowering ; Flowering plants ; Gametes ; Gene flow ; Genetic control ; Genetic crosses ; Genetic diversity ; Genome, Plant - genetics ; Genotype ; Genotypes ; Germ Cells, Plant ; Hybridization ; Hybridization, Genetic ; Industrial plants ; Life Sciences ; Magnoliopsida ; Offspring ; Original ; Original Article ; Phenotype ; Plant breeding ; Plant Sciences ; Plants ; Plants (botany) ; Ploidies ; Ploidy ; Pollination ; Polyploidy ; Population biology ; Progeny ; Reproduction ; Reproduction (biology) ; Reproductive fitness ; Seed set ; Seeds ; Self-Fertilization ; Sexual reproduction ; Single-nucleotide polymorphism ; Strong interactions (field theory) ; Swarms ; Triploidy</subject><ispartof>Plant reproduction, 2019-09, Vol.32 (3), p.275-289</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Plant Reproduction is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-9ea7c5d4694c669924a1d69e60e182eaec39fe17069bfb04290b1e26e96a19043</citedby><cites>FETCH-LOGICAL-c547t-9ea7c5d4694c669924a1d69e60e182eaec39fe17069bfb04290b1e26e96a19043</cites><orcidid>0000-0002-7255-6062 ; 0000-0003-3318-323X ; 0000-0001-7178-9748 ; 0000-0003-2277-9249 ; 0000-0001-9550-9288 ; 0000-0002-3450-2733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00497-019-00369-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00497-019-00369-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30903284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duszynska, Dorota</creatorcontrib><creatorcontrib>Vilhjalmsson, Bjarni</creatorcontrib><creatorcontrib>Castillo Bravo, Rosa</creatorcontrib><creatorcontrib>Swamidatta, Sandesh</creatorcontrib><creatorcontrib>Juenger, Thomas E.</creatorcontrib><creatorcontrib>Donoghue, Mark T. A.</creatorcontrib><creatorcontrib>Comte, Aurélie</creatorcontrib><creatorcontrib>Nordborg, Magnus</creatorcontrib><creatorcontrib>Sharbel, Timothy F.</creatorcontrib><creatorcontrib>Brychkova, Galina</creatorcontrib><creatorcontrib>McKeown, Peter C.</creatorcontrib><creatorcontrib>Spillane, Charles</creatorcontrib><title>Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids</title><title>Plant reproduction</title><addtitle>Plant Reprod</addtitle><addtitle>Plant Reprod</addtitle><description>Key message
Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development.
The success or failure of reproductive outcomes from intra-species crosses between plants of different ploidy levels is an important factor in flowering plant evolution and crop breeding. However, the effects of inter-ploidy cross directions on F1 hybrid offspring fitness are poorly understood. In
Arabidopsis thaliana
, hybridization between diploid and tetraploid plants can produce viable F1 triploid plants. When selfed, such F1 triploid plants act as aneuploid gamete production “machines” where the vast majority of gametes generated are aneuploid which, following sexual reproduction, can generate aneuploid swarms of F2 progeny (Henry et al.
2009
). There is potential for some aneuploids to cause gametophyte abortion and/or F2 seed abortion (Henry et al.
2009
). In this study, we analyse the reproductive success of 178 self-fertilized inter-accession F1 hybrid triploids and demonstrate that the proportions of aborted or normally developed F2 seeds from the selfed F1 triploids depend upon a combination of natural variation and cross direction, with strong interaction between these factors. Single-seed ploidy analysis indicates that the embryonic DNA content of phenotypically normal F2 seeds is highly variable and that these DNA content distributions are also affected by genotype and cross direction. Notably, genetically identical reciprocal F1 hybrid triploids display grandparent-of-origin effects on F2 seed set, and hence on the ability to tolerate aneuploidy in F2 seed. There are differences between reciprocal F1 hybrid triploids regarding the proportions of normal and aborted F2 seeds generated, and also for the DNA content averages and distributions of the F2 seeds. To identify genetic variation for tolerance of aneuploidy in F2 seeds, we carried out a GWAS which identified two SNPs, termed
MOT
and
POT
, which represent candidate loci for genetic control of the proportion of normal F2 seeds obtained from selfed F1 triploids. Parental and grandparental effects on F2 seeds obtained from selfed F1 triploids can have transgenerational consequences for asymmetric gene flow, emergence of novel genotypes in polyploid populations, and for control of F2 seed set in triploid crops.</description><subject>Abortion</subject><subject>Agriculture</subject><subject>Analysis</subject><subject>Aneuploidy</subject><subject>Animal reproduction</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis thaliana</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Breeding success</subject><subject>Cell Biology</subject><subject>Deoxyribonucleic acid</subject><subject>Diploidy</subject><subject>DNA</subject><subject>Embryos</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Epigenomics</subject><subject>Evolution</subject><subject>Fitness</subject><subject>Flowering</subject><subject>Flowering plants</subject><subject>Gametes</subject><subject>Gene flow</subject><subject>Genetic control</subject><subject>Genetic crosses</subject><subject>Genetic diversity</subject><subject>Genome, Plant - genetics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Germ Cells, Plant</subject><subject>Hybridization</subject><subject>Hybridization, Genetic</subject><subject>Industrial plants</subject><subject>Life Sciences</subject><subject>Magnoliopsida</subject><subject>Offspring</subject><subject>Original</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant breeding</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Plants (botany)</subject><subject>Ploidies</subject><subject>Ploidy</subject><subject>Pollination</subject><subject>Polyploidy</subject><subject>Population biology</subject><subject>Progeny</subject><subject>Reproduction</subject><subject>Reproduction (biology)</subject><subject>Reproductive fitness</subject><subject>Seed set</subject><subject>Seeds</subject><subject>Self-Fertilization</subject><subject>Sexual reproduction</subject><subject>Single-nucleotide polymorphism</subject><subject>Strong interactions (field theory)</subject><subject>Swarms</subject><subject>Triploidy</subject><issn>2194-7953</issn><issn>2194-7961</issn><issn>2194-7961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAltjAIuX4Eme8QRpVDK1UCQnK2nLikxlXGTvYScU8BO-MO2kHhgWyJV_Od37bx39RvKZwQQHqDwlAqLoEqkoALlUpnxWnjCpR1krS54d5xU-K85TuAIACpxWIl8UJBwWcLcRp8es2Gp_W6DGa0QVveoJdh-2YSOiI8yPGcuiDszvSxpASsS7maCZJ7hGHGOw0r423ZMVIQrTE4j32YdiiHx90ltE0zoYhuUTGjemd8YasKNnsmugsGaPbn5FeFS860yc8fxzPiu-rT7eXV-XNl8_Xl8ubsq1EPZYKTd1WVkglWimVYsJQKxVKQLpgaLDlqkNag1RN14BgChqKTKKShioQ_Kz4OOsOU7NF2-ZrRtPrIbqtiTsdjNPHEe82eh3utZR1pUBlgXePAjH8mDCNeutSi31vPIYp6Vx8WTHBOGT07T_oXZhiLnSmmKyl5EryTF3M1Nr0qJ3vQj63zc3i1rXBY-fy_rJSFVssKrXICe-PEjIz4s9xbaaU9PW3r8csm9n9F0bsDi-loB_cpGc36ewmvXeTljnpzd81OqQ8eScDfAZSDvk1xj8P-4_sb2AN1sU</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Duszynska, Dorota</creator><creator>Vilhjalmsson, Bjarni</creator><creator>Castillo Bravo, Rosa</creator><creator>Swamidatta, Sandesh</creator><creator>Juenger, Thomas E.</creator><creator>Donoghue, Mark T. A.</creator><creator>Comte, Aurélie</creator><creator>Nordborg, Magnus</creator><creator>Sharbel, Timothy F.</creator><creator>Brychkova, Galina</creator><creator>McKeown, Peter C.</creator><creator>Spillane, Charles</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7255-6062</orcidid><orcidid>https://orcid.org/0000-0003-3318-323X</orcidid><orcidid>https://orcid.org/0000-0001-7178-9748</orcidid><orcidid>https://orcid.org/0000-0003-2277-9249</orcidid><orcidid>https://orcid.org/0000-0001-9550-9288</orcidid><orcidid>https://orcid.org/0000-0002-3450-2733</orcidid></search><sort><creationdate>20190901</creationdate><title>Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids</title><author>Duszynska, Dorota ; Vilhjalmsson, Bjarni ; Castillo Bravo, Rosa ; Swamidatta, Sandesh ; Juenger, Thomas E. ; Donoghue, Mark T. A. ; Comte, Aurélie ; Nordborg, Magnus ; Sharbel, Timothy F. ; Brychkova, Galina ; McKeown, Peter C. ; Spillane, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-9ea7c5d4694c669924a1d69e60e182eaec39fe17069bfb04290b1e26e96a19043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abortion</topic><topic>Agriculture</topic><topic>Analysis</topic><topic>Aneuploidy</topic><topic>Animal reproduction</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis thaliana</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Breeding success</topic><topic>Cell Biology</topic><topic>Deoxyribonucleic acid</topic><topic>Diploidy</topic><topic>DNA</topic><topic>Embryos</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Epigenomics</topic><topic>Evolution</topic><topic>Fitness</topic><topic>Flowering</topic><topic>Flowering plants</topic><topic>Gametes</topic><topic>Gene flow</topic><topic>Genetic control</topic><topic>Genetic crosses</topic><topic>Genetic diversity</topic><topic>Genome, Plant - genetics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Germ Cells, Plant</topic><topic>Hybridization</topic><topic>Hybridization, Genetic</topic><topic>Industrial plants</topic><topic>Life Sciences</topic><topic>Magnoliopsida</topic><topic>Offspring</topic><topic>Original</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant breeding</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Plants (botany)</topic><topic>Ploidies</topic><topic>Ploidy</topic><topic>Pollination</topic><topic>Polyploidy</topic><topic>Population biology</topic><topic>Progeny</topic><topic>Reproduction</topic><topic>Reproduction (biology)</topic><topic>Reproductive fitness</topic><topic>Seed set</topic><topic>Seeds</topic><topic>Self-Fertilization</topic><topic>Sexual reproduction</topic><topic>Single-nucleotide polymorphism</topic><topic>Strong interactions (field theory)</topic><topic>Swarms</topic><topic>Triploidy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duszynska, Dorota</creatorcontrib><creatorcontrib>Vilhjalmsson, Bjarni</creatorcontrib><creatorcontrib>Castillo Bravo, Rosa</creatorcontrib><creatorcontrib>Swamidatta, Sandesh</creatorcontrib><creatorcontrib>Juenger, Thomas E.</creatorcontrib><creatorcontrib>Donoghue, Mark T. A.</creatorcontrib><creatorcontrib>Comte, Aurélie</creatorcontrib><creatorcontrib>Nordborg, Magnus</creatorcontrib><creatorcontrib>Sharbel, Timothy F.</creatorcontrib><creatorcontrib>Brychkova, Galina</creatorcontrib><creatorcontrib>McKeown, Peter C.</creatorcontrib><creatorcontrib>Spillane, Charles</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant reproduction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duszynska, Dorota</au><au>Vilhjalmsson, Bjarni</au><au>Castillo Bravo, Rosa</au><au>Swamidatta, Sandesh</au><au>Juenger, Thomas E.</au><au>Donoghue, Mark T. A.</au><au>Comte, Aurélie</au><au>Nordborg, Magnus</au><au>Sharbel, Timothy F.</au><au>Brychkova, Galina</au><au>McKeown, Peter C.</au><au>Spillane, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids</atitle><jtitle>Plant reproduction</jtitle><stitle>Plant Reprod</stitle><addtitle>Plant Reprod</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>32</volume><issue>3</issue><spage>275</spage><epage>289</epage><pages>275-289</pages><issn>2194-7953</issn><issn>2194-7961</issn><eissn>2194-7961</eissn><abstract>Key message
Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development.
The success or failure of reproductive outcomes from intra-species crosses between plants of different ploidy levels is an important factor in flowering plant evolution and crop breeding. However, the effects of inter-ploidy cross directions on F1 hybrid offspring fitness are poorly understood. In
Arabidopsis thaliana
, hybridization between diploid and tetraploid plants can produce viable F1 triploid plants. When selfed, such F1 triploid plants act as aneuploid gamete production “machines” where the vast majority of gametes generated are aneuploid which, following sexual reproduction, can generate aneuploid swarms of F2 progeny (Henry et al.
2009
). There is potential for some aneuploids to cause gametophyte abortion and/or F2 seed abortion (Henry et al.
2009
). In this study, we analyse the reproductive success of 178 self-fertilized inter-accession F1 hybrid triploids and demonstrate that the proportions of aborted or normally developed F2 seeds from the selfed F1 triploids depend upon a combination of natural variation and cross direction, with strong interaction between these factors. Single-seed ploidy analysis indicates that the embryonic DNA content of phenotypically normal F2 seeds is highly variable and that these DNA content distributions are also affected by genotype and cross direction. Notably, genetically identical reciprocal F1 hybrid triploids display grandparent-of-origin effects on F2 seed set, and hence on the ability to tolerate aneuploidy in F2 seed. There are differences between reciprocal F1 hybrid triploids regarding the proportions of normal and aborted F2 seeds generated, and also for the DNA content averages and distributions of the F2 seeds. To identify genetic variation for tolerance of aneuploidy in F2 seeds, we carried out a GWAS which identified two SNPs, termed
MOT
and
POT
, which represent candidate loci for genetic control of the proportion of normal F2 seeds obtained from selfed F1 triploids. Parental and grandparental effects on F2 seeds obtained from selfed F1 triploids can have transgenerational consequences for asymmetric gene flow, emergence of novel genotypes in polyploid populations, and for control of F2 seed set in triploid crops.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30903284</pmid><doi>10.1007/s00497-019-00369-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7255-6062</orcidid><orcidid>https://orcid.org/0000-0003-3318-323X</orcidid><orcidid>https://orcid.org/0000-0001-7178-9748</orcidid><orcidid>https://orcid.org/0000-0003-2277-9249</orcidid><orcidid>https://orcid.org/0000-0001-9550-9288</orcidid><orcidid>https://orcid.org/0000-0002-3450-2733</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-7953 |
ispartof | Plant reproduction, 2019-09, Vol.32 (3), p.275-289 |
issn | 2194-7953 2194-7961 2194-7961 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6675909 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Abortion Agriculture Analysis Aneuploidy Animal reproduction Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - physiology Arabidopsis thaliana Biological Evolution Biomedical and Life Sciences Breeding success Cell Biology Deoxyribonucleic acid Diploidy DNA Embryos Epigenetic inheritance Epigenetics Epigenomics Evolution Fitness Flowering Flowering plants Gametes Gene flow Genetic control Genetic crosses Genetic diversity Genome, Plant - genetics Genotype Genotypes Germ Cells, Plant Hybridization Hybridization, Genetic Industrial plants Life Sciences Magnoliopsida Offspring Original Original Article Phenotype Plant breeding Plant Sciences Plants Plants (botany) Ploidies Ploidy Pollination Polyploidy Population biology Progeny Reproduction Reproduction (biology) Reproductive fitness Seed set Seeds Self-Fertilization Sexual reproduction Single-nucleotide polymorphism Strong interactions (field theory) Swarms Triploidy |
title | Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transgenerational%20effects%20of%20inter-ploidy%20cross%20direction%20on%20reproduction%20and%20F2%20seed%20development%20of%20Arabidopsis%20thaliana%20F1%20hybrid%20triploids&rft.jtitle=Plant%20reproduction&rft.au=Duszynska,%20Dorota&rft.date=2019-09-01&rft.volume=32&rft.issue=3&rft.spage=275&rft.epage=289&rft.pages=275-289&rft.issn=2194-7953&rft.eissn=2194-7961&rft_id=info:doi/10.1007/s00497-019-00369-6&rft_dat=%3Cgale_pubme%3EA595288598%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267663963&rft_id=info:pmid/30903284&rft_galeid=A595288598&rfr_iscdi=true |