Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids

Key message Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development. The success or failure of reproductive outcomes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant reproduction 2019-09, Vol.32 (3), p.275-289
Hauptverfasser: Duszynska, Dorota, Vilhjalmsson, Bjarni, Castillo Bravo, Rosa, Swamidatta, Sandesh, Juenger, Thomas E., Donoghue, Mark T. A., Comte, Aurélie, Nordborg, Magnus, Sharbel, Timothy F., Brychkova, Galina, McKeown, Peter C., Spillane, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue 3
container_start_page 275
container_title Plant reproduction
container_volume 32
creator Duszynska, Dorota
Vilhjalmsson, Bjarni
Castillo Bravo, Rosa
Swamidatta, Sandesh
Juenger, Thomas E.
Donoghue, Mark T. A.
Comte, Aurélie
Nordborg, Magnus
Sharbel, Timothy F.
Brychkova, Galina
McKeown, Peter C.
Spillane, Charles
description Key message Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development. The success or failure of reproductive outcomes from intra-species crosses between plants of different ploidy levels is an important factor in flowering plant evolution and crop breeding. However, the effects of inter-ploidy cross directions on F1 hybrid offspring fitness are poorly understood. In Arabidopsis thaliana , hybridization between diploid and tetraploid plants can produce viable F1 triploid plants. When selfed, such F1 triploid plants act as aneuploid gamete production “machines” where the vast majority of gametes generated are aneuploid which, following sexual reproduction, can generate aneuploid swarms of F2 progeny (Henry et al. 2009 ). There is potential for some aneuploids to cause gametophyte abortion and/or F2 seed abortion (Henry et al. 2009 ). In this study, we analyse the reproductive success of 178 self-fertilized inter-accession F1 hybrid triploids and demonstrate that the proportions of aborted or normally developed F2 seeds from the selfed F1 triploids depend upon a combination of natural variation and cross direction, with strong interaction between these factors. Single-seed ploidy analysis indicates that the embryonic DNA content of phenotypically normal F2 seeds is highly variable and that these DNA content distributions are also affected by genotype and cross direction. Notably, genetically identical reciprocal F1 hybrid triploids display grandparent-of-origin effects on F2 seed set, and hence on the ability to tolerate aneuploidy in F2 seed. There are differences between reciprocal F1 hybrid triploids regarding the proportions of normal and aborted F2 seeds generated, and also for the DNA content averages and distributions of the F2 seeds. To identify genetic variation for tolerance of aneuploidy in F2 seeds, we carried out a GWAS which identified two SNPs, termed MOT and POT , which represent candidate loci for genetic control of the proportion of normal F2 seeds obtained from selfed F1 triploids. Parental and grandparental effects on F2 seeds obtained from selfed F1 triploids can have transgenerational consequences for asymmetric gene flow, emergence of novel genotypes in polyploid populations, and for control of F2 seed set in triploid crops.
doi_str_mv 10.1007/s00497-019-00369-6
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6675909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595288598</galeid><sourcerecordid>A595288598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-9ea7c5d4694c669924a1d69e60e182eaec39fe17069bfb04290b1e26e96a19043</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAltjAIuX4Eme8QRpVDK1UCQnK2nLikxlXGTvYScU8BO-MO2kHhgWyJV_Od37bx39RvKZwQQHqDwlAqLoEqkoALlUpnxWnjCpR1krS54d5xU-K85TuAIACpxWIl8UJBwWcLcRp8es2Gp_W6DGa0QVveoJdh-2YSOiI8yPGcuiDszvSxpASsS7maCZJ7hGHGOw0r423ZMVIQrTE4j32YdiiHx90ltE0zoYhuUTGjemd8YasKNnsmugsGaPbn5FeFS860yc8fxzPiu-rT7eXV-XNl8_Xl8ubsq1EPZYKTd1WVkglWimVYsJQKxVKQLpgaLDlqkNag1RN14BgChqKTKKShioQ_Kz4OOsOU7NF2-ZrRtPrIbqtiTsdjNPHEe82eh3utZR1pUBlgXePAjH8mDCNeutSi31vPIYp6Vx8WTHBOGT07T_oXZhiLnSmmKyl5EryTF3M1Nr0qJ3vQj63zc3i1rXBY-fy_rJSFVssKrXICe-PEjIz4s9xbaaU9PW3r8csm9n9F0bsDi-loB_cpGc36ewmvXeTljnpzd81OqQ8eScDfAZSDvk1xj8P-4_sb2AN1sU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267663963</pqid></control><display><type>article</type><title>Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Duszynska, Dorota ; Vilhjalmsson, Bjarni ; Castillo Bravo, Rosa ; Swamidatta, Sandesh ; Juenger, Thomas E. ; Donoghue, Mark T. A. ; Comte, Aurélie ; Nordborg, Magnus ; Sharbel, Timothy F. ; Brychkova, Galina ; McKeown, Peter C. ; Spillane, Charles</creator><creatorcontrib>Duszynska, Dorota ; Vilhjalmsson, Bjarni ; Castillo Bravo, Rosa ; Swamidatta, Sandesh ; Juenger, Thomas E. ; Donoghue, Mark T. A. ; Comte, Aurélie ; Nordborg, Magnus ; Sharbel, Timothy F. ; Brychkova, Galina ; McKeown, Peter C. ; Spillane, Charles</creatorcontrib><description>Key message Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development. The success or failure of reproductive outcomes from intra-species crosses between plants of different ploidy levels is an important factor in flowering plant evolution and crop breeding. However, the effects of inter-ploidy cross directions on F1 hybrid offspring fitness are poorly understood. In Arabidopsis thaliana , hybridization between diploid and tetraploid plants can produce viable F1 triploid plants. When selfed, such F1 triploid plants act as aneuploid gamete production “machines” where the vast majority of gametes generated are aneuploid which, following sexual reproduction, can generate aneuploid swarms of F2 progeny (Henry et al. 2009 ). There is potential for some aneuploids to cause gametophyte abortion and/or F2 seed abortion (Henry et al. 2009 ). In this study, we analyse the reproductive success of 178 self-fertilized inter-accession F1 hybrid triploids and demonstrate that the proportions of aborted or normally developed F2 seeds from the selfed F1 triploids depend upon a combination of natural variation and cross direction, with strong interaction between these factors. Single-seed ploidy analysis indicates that the embryonic DNA content of phenotypically normal F2 seeds is highly variable and that these DNA content distributions are also affected by genotype and cross direction. Notably, genetically identical reciprocal F1 hybrid triploids display grandparent-of-origin effects on F2 seed set, and hence on the ability to tolerate aneuploidy in F2 seed. There are differences between reciprocal F1 hybrid triploids regarding the proportions of normal and aborted F2 seeds generated, and also for the DNA content averages and distributions of the F2 seeds. To identify genetic variation for tolerance of aneuploidy in F2 seeds, we carried out a GWAS which identified two SNPs, termed MOT and POT , which represent candidate loci for genetic control of the proportion of normal F2 seeds obtained from selfed F1 triploids. Parental and grandparental effects on F2 seeds obtained from selfed F1 triploids can have transgenerational consequences for asymmetric gene flow, emergence of novel genotypes in polyploid populations, and for control of F2 seed set in triploid crops.</description><identifier>ISSN: 2194-7953</identifier><identifier>ISSN: 2194-7961</identifier><identifier>EISSN: 2194-7961</identifier><identifier>DOI: 10.1007/s00497-019-00369-6</identifier><identifier>PMID: 30903284</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abortion ; Agriculture ; Analysis ; Aneuploidy ; Animal reproduction ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - physiology ; Arabidopsis thaliana ; Biological Evolution ; Biomedical and Life Sciences ; Breeding success ; Cell Biology ; Deoxyribonucleic acid ; Diploidy ; DNA ; Embryos ; Epigenetic inheritance ; Epigenetics ; Epigenomics ; Evolution ; Fitness ; Flowering ; Flowering plants ; Gametes ; Gene flow ; Genetic control ; Genetic crosses ; Genetic diversity ; Genome, Plant - genetics ; Genotype ; Genotypes ; Germ Cells, Plant ; Hybridization ; Hybridization, Genetic ; Industrial plants ; Life Sciences ; Magnoliopsida ; Offspring ; Original ; Original Article ; Phenotype ; Plant breeding ; Plant Sciences ; Plants ; Plants (botany) ; Ploidies ; Ploidy ; Pollination ; Polyploidy ; Population biology ; Progeny ; Reproduction ; Reproduction (biology) ; Reproductive fitness ; Seed set ; Seeds ; Self-Fertilization ; Sexual reproduction ; Single-nucleotide polymorphism ; Strong interactions (field theory) ; Swarms ; Triploidy</subject><ispartof>Plant reproduction, 2019-09, Vol.32 (3), p.275-289</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Plant Reproduction is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-9ea7c5d4694c669924a1d69e60e182eaec39fe17069bfb04290b1e26e96a19043</citedby><cites>FETCH-LOGICAL-c547t-9ea7c5d4694c669924a1d69e60e182eaec39fe17069bfb04290b1e26e96a19043</cites><orcidid>0000-0002-7255-6062 ; 0000-0003-3318-323X ; 0000-0001-7178-9748 ; 0000-0003-2277-9249 ; 0000-0001-9550-9288 ; 0000-0002-3450-2733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00497-019-00369-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00497-019-00369-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30903284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duszynska, Dorota</creatorcontrib><creatorcontrib>Vilhjalmsson, Bjarni</creatorcontrib><creatorcontrib>Castillo Bravo, Rosa</creatorcontrib><creatorcontrib>Swamidatta, Sandesh</creatorcontrib><creatorcontrib>Juenger, Thomas E.</creatorcontrib><creatorcontrib>Donoghue, Mark T. A.</creatorcontrib><creatorcontrib>Comte, Aurélie</creatorcontrib><creatorcontrib>Nordborg, Magnus</creatorcontrib><creatorcontrib>Sharbel, Timothy F.</creatorcontrib><creatorcontrib>Brychkova, Galina</creatorcontrib><creatorcontrib>McKeown, Peter C.</creatorcontrib><creatorcontrib>Spillane, Charles</creatorcontrib><title>Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids</title><title>Plant reproduction</title><addtitle>Plant Reprod</addtitle><addtitle>Plant Reprod</addtitle><description>Key message Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development. The success or failure of reproductive outcomes from intra-species crosses between plants of different ploidy levels is an important factor in flowering plant evolution and crop breeding. However, the effects of inter-ploidy cross directions on F1 hybrid offspring fitness are poorly understood. In Arabidopsis thaliana , hybridization between diploid and tetraploid plants can produce viable F1 triploid plants. When selfed, such F1 triploid plants act as aneuploid gamete production “machines” where the vast majority of gametes generated are aneuploid which, following sexual reproduction, can generate aneuploid swarms of F2 progeny (Henry et al. 2009 ). There is potential for some aneuploids to cause gametophyte abortion and/or F2 seed abortion (Henry et al. 2009 ). In this study, we analyse the reproductive success of 178 self-fertilized inter-accession F1 hybrid triploids and demonstrate that the proportions of aborted or normally developed F2 seeds from the selfed F1 triploids depend upon a combination of natural variation and cross direction, with strong interaction between these factors. Single-seed ploidy analysis indicates that the embryonic DNA content of phenotypically normal F2 seeds is highly variable and that these DNA content distributions are also affected by genotype and cross direction. Notably, genetically identical reciprocal F1 hybrid triploids display grandparent-of-origin effects on F2 seed set, and hence on the ability to tolerate aneuploidy in F2 seed. There are differences between reciprocal F1 hybrid triploids regarding the proportions of normal and aborted F2 seeds generated, and also for the DNA content averages and distributions of the F2 seeds. To identify genetic variation for tolerance of aneuploidy in F2 seeds, we carried out a GWAS which identified two SNPs, termed MOT and POT , which represent candidate loci for genetic control of the proportion of normal F2 seeds obtained from selfed F1 triploids. Parental and grandparental effects on F2 seeds obtained from selfed F1 triploids can have transgenerational consequences for asymmetric gene flow, emergence of novel genotypes in polyploid populations, and for control of F2 seed set in triploid crops.</description><subject>Abortion</subject><subject>Agriculture</subject><subject>Analysis</subject><subject>Aneuploidy</subject><subject>Animal reproduction</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis thaliana</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Breeding success</subject><subject>Cell Biology</subject><subject>Deoxyribonucleic acid</subject><subject>Diploidy</subject><subject>DNA</subject><subject>Embryos</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Epigenomics</subject><subject>Evolution</subject><subject>Fitness</subject><subject>Flowering</subject><subject>Flowering plants</subject><subject>Gametes</subject><subject>Gene flow</subject><subject>Genetic control</subject><subject>Genetic crosses</subject><subject>Genetic diversity</subject><subject>Genome, Plant - genetics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Germ Cells, Plant</subject><subject>Hybridization</subject><subject>Hybridization, Genetic</subject><subject>Industrial plants</subject><subject>Life Sciences</subject><subject>Magnoliopsida</subject><subject>Offspring</subject><subject>Original</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant breeding</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Plants (botany)</subject><subject>Ploidies</subject><subject>Ploidy</subject><subject>Pollination</subject><subject>Polyploidy</subject><subject>Population biology</subject><subject>Progeny</subject><subject>Reproduction</subject><subject>Reproduction (biology)</subject><subject>Reproductive fitness</subject><subject>Seed set</subject><subject>Seeds</subject><subject>Self-Fertilization</subject><subject>Sexual reproduction</subject><subject>Single-nucleotide polymorphism</subject><subject>Strong interactions (field theory)</subject><subject>Swarms</subject><subject>Triploidy</subject><issn>2194-7953</issn><issn>2194-7961</issn><issn>2194-7961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAltjAIuX4Eme8QRpVDK1UCQnK2nLikxlXGTvYScU8BO-MO2kHhgWyJV_Od37bx39RvKZwQQHqDwlAqLoEqkoALlUpnxWnjCpR1krS54d5xU-K85TuAIACpxWIl8UJBwWcLcRp8es2Gp_W6DGa0QVveoJdh-2YSOiI8yPGcuiDszvSxpASsS7maCZJ7hGHGOw0r423ZMVIQrTE4j32YdiiHx90ltE0zoYhuUTGjemd8YasKNnsmugsGaPbn5FeFS860yc8fxzPiu-rT7eXV-XNl8_Xl8ubsq1EPZYKTd1WVkglWimVYsJQKxVKQLpgaLDlqkNag1RN14BgChqKTKKShioQ_Kz4OOsOU7NF2-ZrRtPrIbqtiTsdjNPHEe82eh3utZR1pUBlgXePAjH8mDCNeutSi31vPIYp6Vx8WTHBOGT07T_oXZhiLnSmmKyl5EryTF3M1Nr0qJ3vQj63zc3i1rXBY-fy_rJSFVssKrXICe-PEjIz4s9xbaaU9PW3r8csm9n9F0bsDi-loB_cpGc36ewmvXeTljnpzd81OqQ8eScDfAZSDvk1xj8P-4_sb2AN1sU</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Duszynska, Dorota</creator><creator>Vilhjalmsson, Bjarni</creator><creator>Castillo Bravo, Rosa</creator><creator>Swamidatta, Sandesh</creator><creator>Juenger, Thomas E.</creator><creator>Donoghue, Mark T. A.</creator><creator>Comte, Aurélie</creator><creator>Nordborg, Magnus</creator><creator>Sharbel, Timothy F.</creator><creator>Brychkova, Galina</creator><creator>McKeown, Peter C.</creator><creator>Spillane, Charles</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7255-6062</orcidid><orcidid>https://orcid.org/0000-0003-3318-323X</orcidid><orcidid>https://orcid.org/0000-0001-7178-9748</orcidid><orcidid>https://orcid.org/0000-0003-2277-9249</orcidid><orcidid>https://orcid.org/0000-0001-9550-9288</orcidid><orcidid>https://orcid.org/0000-0002-3450-2733</orcidid></search><sort><creationdate>20190901</creationdate><title>Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids</title><author>Duszynska, Dorota ; Vilhjalmsson, Bjarni ; Castillo Bravo, Rosa ; Swamidatta, Sandesh ; Juenger, Thomas E. ; Donoghue, Mark T. A. ; Comte, Aurélie ; Nordborg, Magnus ; Sharbel, Timothy F. ; Brychkova, Galina ; McKeown, Peter C. ; Spillane, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-9ea7c5d4694c669924a1d69e60e182eaec39fe17069bfb04290b1e26e96a19043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abortion</topic><topic>Agriculture</topic><topic>Analysis</topic><topic>Aneuploidy</topic><topic>Animal reproduction</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis thaliana</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Breeding success</topic><topic>Cell Biology</topic><topic>Deoxyribonucleic acid</topic><topic>Diploidy</topic><topic>DNA</topic><topic>Embryos</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Epigenomics</topic><topic>Evolution</topic><topic>Fitness</topic><topic>Flowering</topic><topic>Flowering plants</topic><topic>Gametes</topic><topic>Gene flow</topic><topic>Genetic control</topic><topic>Genetic crosses</topic><topic>Genetic diversity</topic><topic>Genome, Plant - genetics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Germ Cells, Plant</topic><topic>Hybridization</topic><topic>Hybridization, Genetic</topic><topic>Industrial plants</topic><topic>Life Sciences</topic><topic>Magnoliopsida</topic><topic>Offspring</topic><topic>Original</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant breeding</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Plants (botany)</topic><topic>Ploidies</topic><topic>Ploidy</topic><topic>Pollination</topic><topic>Polyploidy</topic><topic>Population biology</topic><topic>Progeny</topic><topic>Reproduction</topic><topic>Reproduction (biology)</topic><topic>Reproductive fitness</topic><topic>Seed set</topic><topic>Seeds</topic><topic>Self-Fertilization</topic><topic>Sexual reproduction</topic><topic>Single-nucleotide polymorphism</topic><topic>Strong interactions (field theory)</topic><topic>Swarms</topic><topic>Triploidy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duszynska, Dorota</creatorcontrib><creatorcontrib>Vilhjalmsson, Bjarni</creatorcontrib><creatorcontrib>Castillo Bravo, Rosa</creatorcontrib><creatorcontrib>Swamidatta, Sandesh</creatorcontrib><creatorcontrib>Juenger, Thomas E.</creatorcontrib><creatorcontrib>Donoghue, Mark T. A.</creatorcontrib><creatorcontrib>Comte, Aurélie</creatorcontrib><creatorcontrib>Nordborg, Magnus</creatorcontrib><creatorcontrib>Sharbel, Timothy F.</creatorcontrib><creatorcontrib>Brychkova, Galina</creatorcontrib><creatorcontrib>McKeown, Peter C.</creatorcontrib><creatorcontrib>Spillane, Charles</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant reproduction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duszynska, Dorota</au><au>Vilhjalmsson, Bjarni</au><au>Castillo Bravo, Rosa</au><au>Swamidatta, Sandesh</au><au>Juenger, Thomas E.</au><au>Donoghue, Mark T. A.</au><au>Comte, Aurélie</au><au>Nordborg, Magnus</au><au>Sharbel, Timothy F.</au><au>Brychkova, Galina</au><au>McKeown, Peter C.</au><au>Spillane, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids</atitle><jtitle>Plant reproduction</jtitle><stitle>Plant Reprod</stitle><addtitle>Plant Reprod</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>32</volume><issue>3</issue><spage>275</spage><epage>289</epage><pages>275-289</pages><issn>2194-7953</issn><issn>2194-7961</issn><eissn>2194-7961</eissn><abstract>Key message Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development. The success or failure of reproductive outcomes from intra-species crosses between plants of different ploidy levels is an important factor in flowering plant evolution and crop breeding. However, the effects of inter-ploidy cross directions on F1 hybrid offspring fitness are poorly understood. In Arabidopsis thaliana , hybridization between diploid and tetraploid plants can produce viable F1 triploid plants. When selfed, such F1 triploid plants act as aneuploid gamete production “machines” where the vast majority of gametes generated are aneuploid which, following sexual reproduction, can generate aneuploid swarms of F2 progeny (Henry et al. 2009 ). There is potential for some aneuploids to cause gametophyte abortion and/or F2 seed abortion (Henry et al. 2009 ). In this study, we analyse the reproductive success of 178 self-fertilized inter-accession F1 hybrid triploids and demonstrate that the proportions of aborted or normally developed F2 seeds from the selfed F1 triploids depend upon a combination of natural variation and cross direction, with strong interaction between these factors. Single-seed ploidy analysis indicates that the embryonic DNA content of phenotypically normal F2 seeds is highly variable and that these DNA content distributions are also affected by genotype and cross direction. Notably, genetically identical reciprocal F1 hybrid triploids display grandparent-of-origin effects on F2 seed set, and hence on the ability to tolerate aneuploidy in F2 seed. There are differences between reciprocal F1 hybrid triploids regarding the proportions of normal and aborted F2 seeds generated, and also for the DNA content averages and distributions of the F2 seeds. To identify genetic variation for tolerance of aneuploidy in F2 seeds, we carried out a GWAS which identified two SNPs, termed MOT and POT , which represent candidate loci for genetic control of the proportion of normal F2 seeds obtained from selfed F1 triploids. Parental and grandparental effects on F2 seeds obtained from selfed F1 triploids can have transgenerational consequences for asymmetric gene flow, emergence of novel genotypes in polyploid populations, and for control of F2 seed set in triploid crops.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30903284</pmid><doi>10.1007/s00497-019-00369-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7255-6062</orcidid><orcidid>https://orcid.org/0000-0003-3318-323X</orcidid><orcidid>https://orcid.org/0000-0001-7178-9748</orcidid><orcidid>https://orcid.org/0000-0003-2277-9249</orcidid><orcidid>https://orcid.org/0000-0001-9550-9288</orcidid><orcidid>https://orcid.org/0000-0002-3450-2733</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-7953
ispartof Plant reproduction, 2019-09, Vol.32 (3), p.275-289
issn 2194-7953
2194-7961
2194-7961
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6675909
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Abortion
Agriculture
Analysis
Aneuploidy
Animal reproduction
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - physiology
Arabidopsis thaliana
Biological Evolution
Biomedical and Life Sciences
Breeding success
Cell Biology
Deoxyribonucleic acid
Diploidy
DNA
Embryos
Epigenetic inheritance
Epigenetics
Epigenomics
Evolution
Fitness
Flowering
Flowering plants
Gametes
Gene flow
Genetic control
Genetic crosses
Genetic diversity
Genome, Plant - genetics
Genotype
Genotypes
Germ Cells, Plant
Hybridization
Hybridization, Genetic
Industrial plants
Life Sciences
Magnoliopsida
Offspring
Original
Original Article
Phenotype
Plant breeding
Plant Sciences
Plants
Plants (botany)
Ploidies
Ploidy
Pollination
Polyploidy
Population biology
Progeny
Reproduction
Reproduction (biology)
Reproductive fitness
Seed set
Seeds
Self-Fertilization
Sexual reproduction
Single-nucleotide polymorphism
Strong interactions (field theory)
Swarms
Triploidy
title Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transgenerational%20effects%20of%20inter-ploidy%20cross%20direction%20on%20reproduction%20and%20F2%20seed%20development%20of%20Arabidopsis%20thaliana%20F1%20hybrid%20triploids&rft.jtitle=Plant%20reproduction&rft.au=Duszynska,%20Dorota&rft.date=2019-09-01&rft.volume=32&rft.issue=3&rft.spage=275&rft.epage=289&rft.pages=275-289&rft.issn=2194-7953&rft.eissn=2194-7961&rft_id=info:doi/10.1007/s00497-019-00369-6&rft_dat=%3Cgale_pubme%3EA595288598%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267663963&rft_id=info:pmid/30903284&rft_galeid=A595288598&rfr_iscdi=true