Rac1 and RhoA Promote Neurite Outgrowth through Formation and Stabilization of Growth Cone Point Contacts
Growth cone advance depends on coordinated membrane protrusion and adhesion to the extracellular matrix. Although many studies have addressed the mechanisms responsible for membrane protrusion, the assembly of integrin-dependent adhesion sites known as point contacts remains poorly understood in gro...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2006-02, Vol.26 (5), p.1418-1428 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1428 |
---|---|
container_issue | 5 |
container_start_page | 1418 |
container_title | The Journal of neuroscience |
container_volume | 26 |
creator | Woo, Stephanie Gomez, Timothy M |
description | Growth cone advance depends on coordinated membrane protrusion and adhesion to the extracellular matrix. Although many studies have addressed the mechanisms responsible for membrane protrusion, the assembly of integrin-dependent adhesion sites known as point contacts remains poorly understood in growth cones. We show balanced Rac1 activity controls both leading edge protrusion and point contact dynamics during neurite outgrowth. Immunocytochemistry and live imaging of paxillin-green fluorescent protein (GFP) showed that inhibiting Rac1 blocked point contact formation, whereas Rac1 overactivation produced small, unstable point contacts. Both inhibition and overactivation of Rac1 reduced the persistence of lamellar protrusions and neurite outgrowth. Inhibition of ROCK (Rho kinase), a RhoA effector, perturbed protrusion and point contact dynamics similar to Rac1 overactivation. Moreover, the repulsive guidance cue Semaphorin 3A, which signals through Rac1, destabilizes point contacts. Together, our data suggest that coordinated Rho GTPase activities regulate neurite outgrowth through point contact formation and stabilization of membrane protrusion. |
doi_str_mv | 10.1523/JNEUROSCI.4209-05.2006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6675502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17482367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-75bc610bbe7e612f10cc483c45ba8f23f5547c7c899761d8929d53428393fda03</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvLX6hy4pZl_J1ckKpVW4qqbrVtz5bjOBujJC620wh-PVl21Y8TpxnNPO-rGb0InWJYYk7o1x835w-b9d3qaskIlDnwJQEQ79Bi3pY5YYDfowUQCblgkh2hTzH-BAAJWH5ER1gwToTgC-Q22uBMD3W2af1Zdht875PNbuwY3FzXY9oGP6U2S23w47bNLnzodXJ--Ce6S7pynfuzn_gmu9zTKz_Y7Na7Ie3apE2KJ-hDo7toPx_qMXq4OL9ffc-v15dXq7Pr3PCSplzyyggMVWWlFZg0GIxhBTWMV7poCG04Z9JIU5SlFLguSlLWnDJS0JI2tQZ6jL7tfR_Hqre1sUMKulOPwfU6_FZeO_V2M7hWbf2TEkJyDmQ2-HIwCP7XaGNSvYvGdp0erB-jElIQJgn8F8SSFYQKOYNiD5rgYwy2eb4Gg9rFqZ7jVLs4FXC1i3MWnr7-5UV2yO_lhNZt28kFq2Kvu27GsZqmiQjFFWa4oH8BFRurIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17482367</pqid></control><display><type>article</type><title>Rac1 and RhoA Promote Neurite Outgrowth through Formation and Stabilization of Growth Cone Point Contacts</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Woo, Stephanie ; Gomez, Timothy M</creator><creatorcontrib>Woo, Stephanie ; Gomez, Timothy M</creatorcontrib><description>Growth cone advance depends on coordinated membrane protrusion and adhesion to the extracellular matrix. Although many studies have addressed the mechanisms responsible for membrane protrusion, the assembly of integrin-dependent adhesion sites known as point contacts remains poorly understood in growth cones. We show balanced Rac1 activity controls both leading edge protrusion and point contact dynamics during neurite outgrowth. Immunocytochemistry and live imaging of paxillin-green fluorescent protein (GFP) showed that inhibiting Rac1 blocked point contact formation, whereas Rac1 overactivation produced small, unstable point contacts. Both inhibition and overactivation of Rac1 reduced the persistence of lamellar protrusions and neurite outgrowth. Inhibition of ROCK (Rho kinase), a RhoA effector, perturbed protrusion and point contact dynamics similar to Rac1 overactivation. Moreover, the repulsive guidance cue Semaphorin 3A, which signals through Rac1, destabilizes point contacts. Together, our data suggest that coordinated Rho GTPase activities regulate neurite outgrowth through point contact formation and stabilization of membrane protrusion.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.4209-05.2006</identifier><identifier>PMID: 16452665</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Cell Adhesion - drug effects ; Cells, Cultured ; Green Fluorescent Proteins - genetics ; Growth Cones - enzymology ; Growth Cones - ultrastructure ; Intracellular Signaling Peptides and Proteins ; Laminin - pharmacology ; Microscopy, Fluorescence ; Myosin Type II - metabolism ; Neurites - enzymology ; Neurites - ultrastructure ; Paxillin - analysis ; Paxillin - genetics ; Protein-Serine-Threonine Kinases - antagonists & inhibitors ; Pseudopodia - ultrastructure ; rac1 GTP-Binding Protein - antagonists & inhibitors ; rac1 GTP-Binding Protein - metabolism ; Recombinant Fusion Proteins - analysis ; rho-Associated Kinases ; rhoA GTP-Binding Protein - metabolism ; Semaphorin-3A - pharmacology ; Xenopus laevis</subject><ispartof>The Journal of neuroscience, 2006-02, Vol.26 (5), p.1418-1428</ispartof><rights>Copyright © 2006 Society for Neuroscience 0270-6474/06/261418-11$15.00/0 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-75bc610bbe7e612f10cc483c45ba8f23f5547c7c899761d8929d53428393fda03</citedby><cites>FETCH-LOGICAL-c593t-75bc610bbe7e612f10cc483c45ba8f23f5547c7c899761d8929d53428393fda03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675502/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675502/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16452665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woo, Stephanie</creatorcontrib><creatorcontrib>Gomez, Timothy M</creatorcontrib><title>Rac1 and RhoA Promote Neurite Outgrowth through Formation and Stabilization of Growth Cone Point Contacts</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Growth cone advance depends on coordinated membrane protrusion and adhesion to the extracellular matrix. Although many studies have addressed the mechanisms responsible for membrane protrusion, the assembly of integrin-dependent adhesion sites known as point contacts remains poorly understood in growth cones. We show balanced Rac1 activity controls both leading edge protrusion and point contact dynamics during neurite outgrowth. Immunocytochemistry and live imaging of paxillin-green fluorescent protein (GFP) showed that inhibiting Rac1 blocked point contact formation, whereas Rac1 overactivation produced small, unstable point contacts. Both inhibition and overactivation of Rac1 reduced the persistence of lamellar protrusions and neurite outgrowth. Inhibition of ROCK (Rho kinase), a RhoA effector, perturbed protrusion and point contact dynamics similar to Rac1 overactivation. Moreover, the repulsive guidance cue Semaphorin 3A, which signals through Rac1, destabilizes point contacts. Together, our data suggest that coordinated Rho GTPase activities regulate neurite outgrowth through point contact formation and stabilization of membrane protrusion.</description><subject>Animals</subject><subject>Cell Adhesion - drug effects</subject><subject>Cells, Cultured</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Growth Cones - enzymology</subject><subject>Growth Cones - ultrastructure</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Laminin - pharmacology</subject><subject>Microscopy, Fluorescence</subject><subject>Myosin Type II - metabolism</subject><subject>Neurites - enzymology</subject><subject>Neurites - ultrastructure</subject><subject>Paxillin - analysis</subject><subject>Paxillin - genetics</subject><subject>Protein-Serine-Threonine Kinases - antagonists & inhibitors</subject><subject>Pseudopodia - ultrastructure</subject><subject>rac1 GTP-Binding Protein - antagonists & inhibitors</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>Recombinant Fusion Proteins - analysis</subject><subject>rho-Associated Kinases</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>Semaphorin-3A - pharmacology</subject><subject>Xenopus laevis</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvLX6hy4pZl_J1ckKpVW4qqbrVtz5bjOBujJC620wh-PVl21Y8TpxnNPO-rGb0InWJYYk7o1x835w-b9d3qaskIlDnwJQEQ79Bi3pY5YYDfowUQCblgkh2hTzH-BAAJWH5ER1gwToTgC-Q22uBMD3W2af1Zdht875PNbuwY3FzXY9oGP6U2S23w47bNLnzodXJ--Ce6S7pynfuzn_gmu9zTKz_Y7Na7Ie3apE2KJ-hDo7toPx_qMXq4OL9ffc-v15dXq7Pr3PCSplzyyggMVWWlFZg0GIxhBTWMV7poCG04Z9JIU5SlFLguSlLWnDJS0JI2tQZ6jL7tfR_Hqre1sUMKulOPwfU6_FZeO_V2M7hWbf2TEkJyDmQ2-HIwCP7XaGNSvYvGdp0erB-jElIQJgn8F8SSFYQKOYNiD5rgYwy2eb4Gg9rFqZ7jVLs4FXC1i3MWnr7-5UV2yO_lhNZt28kFq2Kvu27GsZqmiQjFFWa4oH8BFRurIA</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Woo, Stephanie</creator><creator>Gomez, Timothy M</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060201</creationdate><title>Rac1 and RhoA Promote Neurite Outgrowth through Formation and Stabilization of Growth Cone Point Contacts</title><author>Woo, Stephanie ; Gomez, Timothy M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-75bc610bbe7e612f10cc483c45ba8f23f5547c7c899761d8929d53428393fda03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Cell Adhesion - drug effects</topic><topic>Cells, Cultured</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Growth Cones - enzymology</topic><topic>Growth Cones - ultrastructure</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Laminin - pharmacology</topic><topic>Microscopy, Fluorescence</topic><topic>Myosin Type II - metabolism</topic><topic>Neurites - enzymology</topic><topic>Neurites - ultrastructure</topic><topic>Paxillin - analysis</topic><topic>Paxillin - genetics</topic><topic>Protein-Serine-Threonine Kinases - antagonists & inhibitors</topic><topic>Pseudopodia - ultrastructure</topic><topic>rac1 GTP-Binding Protein - antagonists & inhibitors</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>Recombinant Fusion Proteins - analysis</topic><topic>rho-Associated Kinases</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>Semaphorin-3A - pharmacology</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woo, Stephanie</creatorcontrib><creatorcontrib>Gomez, Timothy M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woo, Stephanie</au><au>Gomez, Timothy M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rac1 and RhoA Promote Neurite Outgrowth through Formation and Stabilization of Growth Cone Point Contacts</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>26</volume><issue>5</issue><spage>1418</spage><epage>1428</epage><pages>1418-1428</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Growth cone advance depends on coordinated membrane protrusion and adhesion to the extracellular matrix. Although many studies have addressed the mechanisms responsible for membrane protrusion, the assembly of integrin-dependent adhesion sites known as point contacts remains poorly understood in growth cones. We show balanced Rac1 activity controls both leading edge protrusion and point contact dynamics during neurite outgrowth. Immunocytochemistry and live imaging of paxillin-green fluorescent protein (GFP) showed that inhibiting Rac1 blocked point contact formation, whereas Rac1 overactivation produced small, unstable point contacts. Both inhibition and overactivation of Rac1 reduced the persistence of lamellar protrusions and neurite outgrowth. Inhibition of ROCK (Rho kinase), a RhoA effector, perturbed protrusion and point contact dynamics similar to Rac1 overactivation. Moreover, the repulsive guidance cue Semaphorin 3A, which signals through Rac1, destabilizes point contacts. Together, our data suggest that coordinated Rho GTPase activities regulate neurite outgrowth through point contact formation and stabilization of membrane protrusion.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>16452665</pmid><doi>10.1523/JNEUROSCI.4209-05.2006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2006-02, Vol.26 (5), p.1418-1428 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6675502 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Cell Adhesion - drug effects Cells, Cultured Green Fluorescent Proteins - genetics Growth Cones - enzymology Growth Cones - ultrastructure Intracellular Signaling Peptides and Proteins Laminin - pharmacology Microscopy, Fluorescence Myosin Type II - metabolism Neurites - enzymology Neurites - ultrastructure Paxillin - analysis Paxillin - genetics Protein-Serine-Threonine Kinases - antagonists & inhibitors Pseudopodia - ultrastructure rac1 GTP-Binding Protein - antagonists & inhibitors rac1 GTP-Binding Protein - metabolism Recombinant Fusion Proteins - analysis rho-Associated Kinases rhoA GTP-Binding Protein - metabolism Semaphorin-3A - pharmacology Xenopus laevis |
title | Rac1 and RhoA Promote Neurite Outgrowth through Formation and Stabilization of Growth Cone Point Contacts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rac1%20and%20RhoA%20Promote%20Neurite%20Outgrowth%20through%20Formation%20and%20Stabilization%20of%20Growth%20Cone%20Point%20Contacts&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Woo,%20Stephanie&rft.date=2006-02-01&rft.volume=26&rft.issue=5&rft.spage=1418&rft.epage=1428&rft.pages=1418-1428&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.4209-05.2006&rft_dat=%3Cproquest_pubme%3E17482367%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17482367&rft_id=info:pmid/16452665&rfr_iscdi=true |