Intracellular and Trans-Synaptic Regulation of Glutamatergic Synaptogenesis by EphB Receptors
The majority of mature excitatory synapses in the CNS are found on dendritic spines and contain AMPA- and NMDA-type glutamate receptors apposed to presynaptic specializations. EphB receptor tyrosine kinase signaling has been implicated in both NMDA-type glutamate receptor clustering and dendritic sp...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2006-11, Vol.26 (47), p.12152-12164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12164 |
---|---|
container_issue | 47 |
container_start_page | 12152 |
container_title | The Journal of neuroscience |
container_volume | 26 |
creator | Kayser, Matthew S McClelland, Andrew C Hughes, Ethan G Dalva, Matthew B |
description | The majority of mature excitatory synapses in the CNS are found on dendritic spines and contain AMPA- and NMDA-type glutamate receptors apposed to presynaptic specializations. EphB receptor tyrosine kinase signaling has been implicated in both NMDA-type glutamate receptor clustering and dendritic spine formation, but it remains unclear whether EphB plays a broader role in presynaptic and postsynaptic development. Here, we find that EphB2 is involved in organizing excitatory synapses through the independent activities of particular EphB2 protein domains. We demonstrate that EphB2 controls AMPA-type glutamate receptor localization through PDZ (postsynaptic density-95/Discs large/zona occludens-1) binding domain interactions and triggers presynaptic differentiation via its ephrin binding domain. Knockdown of EphB2 in dissociated neurons results in decreased functional synaptic inputs, spines, and presynaptic specializations. Mice lacking EphB1-EphB3 have reduced numbers of synapses, and defects are rescued with postnatal reexpression of EphB2 in single neurons in brain slice. These results demonstrate that EphB2 acts to control the organization of specific classes of mature glutamatergic synapses. |
doi_str_mv | 10.1523/JNEUROSCI.3072-06.2006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6675446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19501183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-ba87ca177bb3f6aeeba294e705f67c5364f411acebe60747d656fb113e5dc24b3</originalsourceid><addsrcrecordid>eNpVkUtrGzEUhUVpaJy0fyHMqnQzzpVGj3hTaIyTOIQE8lgWIcl3xirzcKSZGP_7aLBJ25VA5zvnXukQckZhSgUrzm_vFy-PD0_z5bQAxXKQUwYgP5FJUmc540A_kwkwBbnkih-Tkxj_AIACqr6QY6ooY8BhQn4v2z4Yh3U91CZkpl1lz8G0MX_atWbTe5c9YpWk3ndt1pXZdT30pjE9hippe6irsMXoY2Z32WKzvkwWh-k6xK_kqDR1xG-H85S8XC2e5zf53cP1cv7rLndiJvrcmgvlDFXK2qKUBtEaNuOoQJRSOVFIXnJK05YWJSiuVlLI0lJaoFg5xm1xSn7uczeDbXDlcHxUrTfBNybsdGe8_l9p_VpX3ZuWUgnOZQr4fggI3euAsdeNj-OvmBa7IWo6E0DpRZFAuQdd6GIMWH4MoaDHZvRHM3psRoPUYzPJePbvin9thyoS8GMPrH213vqAOjamrhNO9Xa7ZVJzpSkbZ7wD37Cbxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19501183</pqid></control><display><type>article</type><title>Intracellular and Trans-Synaptic Regulation of Glutamatergic Synaptogenesis by EphB Receptors</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kayser, Matthew S ; McClelland, Andrew C ; Hughes, Ethan G ; Dalva, Matthew B</creator><creatorcontrib>Kayser, Matthew S ; McClelland, Andrew C ; Hughes, Ethan G ; Dalva, Matthew B</creatorcontrib><description>The majority of mature excitatory synapses in the CNS are found on dendritic spines and contain AMPA- and NMDA-type glutamate receptors apposed to presynaptic specializations. EphB receptor tyrosine kinase signaling has been implicated in both NMDA-type glutamate receptor clustering and dendritic spine formation, but it remains unclear whether EphB plays a broader role in presynaptic and postsynaptic development. Here, we find that EphB2 is involved in organizing excitatory synapses through the independent activities of particular EphB2 protein domains. We demonstrate that EphB2 controls AMPA-type glutamate receptor localization through PDZ (postsynaptic density-95/Discs large/zona occludens-1) binding domain interactions and triggers presynaptic differentiation via its ephrin binding domain. Knockdown of EphB2 in dissociated neurons results in decreased functional synaptic inputs, spines, and presynaptic specializations. Mice lacking EphB1-EphB3 have reduced numbers of synapses, and defects are rescued with postnatal reexpression of EphB2 in single neurons in brain slice. These results demonstrate that EphB2 acts to control the organization of specific classes of mature glutamatergic synapses.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3072-06.2006</identifier><identifier>PMID: 17122040</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Cells, Cultured ; Cerebral Cortex - cytology ; Disks Large Homolog 4 Protein ; Embryo, Mammalian ; Glutamic Acid - metabolism ; Humans ; Immunohistochemistry - methods ; Intracellular Signaling Peptides and Proteins - metabolism ; Intracellular Space - physiology ; Luminescent Proteins - metabolism ; Membrane Proteins - metabolism ; Mice ; Mice, Knockout ; Mutagenesis - physiology ; Neurons - cytology ; Organ Culture Techniques ; Patch-Clamp Techniques - methods ; Presynaptic Terminals - metabolism ; Rats ; Receptor, EphB2 - metabolism ; Receptors, Eph Family - deficiency ; Receptors, Eph Family - physiology ; Receptors, Glutamate - genetics ; Receptors, Glutamate - metabolism ; RNA, Small Interfering - metabolism ; Synapses - physiology ; Synaptic Transmission - physiology ; Transfection - methods</subject><ispartof>The Journal of neuroscience, 2006-11, Vol.26 (47), p.12152-12164</ispartof><rights>Copyright © 2006 Society for Neuroscience 0270-6474/06/2612152-13$15.00/0 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-ba87ca177bb3f6aeeba294e705f67c5364f411acebe60747d656fb113e5dc24b3</citedby><cites>FETCH-LOGICAL-c595t-ba87ca177bb3f6aeeba294e705f67c5364f411acebe60747d656fb113e5dc24b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675446/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675446/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17122040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kayser, Matthew S</creatorcontrib><creatorcontrib>McClelland, Andrew C</creatorcontrib><creatorcontrib>Hughes, Ethan G</creatorcontrib><creatorcontrib>Dalva, Matthew B</creatorcontrib><title>Intracellular and Trans-Synaptic Regulation of Glutamatergic Synaptogenesis by EphB Receptors</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The majority of mature excitatory synapses in the CNS are found on dendritic spines and contain AMPA- and NMDA-type glutamate receptors apposed to presynaptic specializations. EphB receptor tyrosine kinase signaling has been implicated in both NMDA-type glutamate receptor clustering and dendritic spine formation, but it remains unclear whether EphB plays a broader role in presynaptic and postsynaptic development. Here, we find that EphB2 is involved in organizing excitatory synapses through the independent activities of particular EphB2 protein domains. We demonstrate that EphB2 controls AMPA-type glutamate receptor localization through PDZ (postsynaptic density-95/Discs large/zona occludens-1) binding domain interactions and triggers presynaptic differentiation via its ephrin binding domain. Knockdown of EphB2 in dissociated neurons results in decreased functional synaptic inputs, spines, and presynaptic specializations. Mice lacking EphB1-EphB3 have reduced numbers of synapses, and defects are rescued with postnatal reexpression of EphB2 in single neurons in brain slice. These results demonstrate that EphB2 acts to control the organization of specific classes of mature glutamatergic synapses.</description><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Disks Large Homolog 4 Protein</subject><subject>Embryo, Mammalian</subject><subject>Glutamic Acid - metabolism</subject><subject>Humans</subject><subject>Immunohistochemistry - methods</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Intracellular Space - physiology</subject><subject>Luminescent Proteins - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mutagenesis - physiology</subject><subject>Neurons - cytology</subject><subject>Organ Culture Techniques</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Rats</subject><subject>Receptor, EphB2 - metabolism</subject><subject>Receptors, Eph Family - deficiency</subject><subject>Receptors, Eph Family - physiology</subject><subject>Receptors, Glutamate - genetics</subject><subject>Receptors, Glutamate - metabolism</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>Transfection - methods</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtrGzEUhUVpaJy0fyHMqnQzzpVGj3hTaIyTOIQE8lgWIcl3xirzcKSZGP_7aLBJ25VA5zvnXukQckZhSgUrzm_vFy-PD0_z5bQAxXKQUwYgP5FJUmc540A_kwkwBbnkih-Tkxj_AIACqr6QY6ooY8BhQn4v2z4Yh3U91CZkpl1lz8G0MX_atWbTe5c9YpWk3ndt1pXZdT30pjE9hippe6irsMXoY2Z32WKzvkwWh-k6xK_kqDR1xG-H85S8XC2e5zf53cP1cv7rLndiJvrcmgvlDFXK2qKUBtEaNuOoQJRSOVFIXnJK05YWJSiuVlLI0lJaoFg5xm1xSn7uczeDbXDlcHxUrTfBNybsdGe8_l9p_VpX3ZuWUgnOZQr4fggI3euAsdeNj-OvmBa7IWo6E0DpRZFAuQdd6GIMWH4MoaDHZvRHM3psRoPUYzPJePbvin9thyoS8GMPrH213vqAOjamrhNO9Xa7ZVJzpSkbZ7wD37Cbxg</recordid><startdate>20061122</startdate><enddate>20061122</enddate><creator>Kayser, Matthew S</creator><creator>McClelland, Andrew C</creator><creator>Hughes, Ethan G</creator><creator>Dalva, Matthew B</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20061122</creationdate><title>Intracellular and Trans-Synaptic Regulation of Glutamatergic Synaptogenesis by EphB Receptors</title><author>Kayser, Matthew S ; McClelland, Andrew C ; Hughes, Ethan G ; Dalva, Matthew B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-ba87ca177bb3f6aeeba294e705f67c5364f411acebe60747d656fb113e5dc24b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Disks Large Homolog 4 Protein</topic><topic>Embryo, Mammalian</topic><topic>Glutamic Acid - metabolism</topic><topic>Humans</topic><topic>Immunohistochemistry - methods</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Intracellular Space - physiology</topic><topic>Luminescent Proteins - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mutagenesis - physiology</topic><topic>Neurons - cytology</topic><topic>Organ Culture Techniques</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Rats</topic><topic>Receptor, EphB2 - metabolism</topic><topic>Receptors, Eph Family - deficiency</topic><topic>Receptors, Eph Family - physiology</topic><topic>Receptors, Glutamate - genetics</topic><topic>Receptors, Glutamate - metabolism</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>Transfection - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kayser, Matthew S</creatorcontrib><creatorcontrib>McClelland, Andrew C</creatorcontrib><creatorcontrib>Hughes, Ethan G</creatorcontrib><creatorcontrib>Dalva, Matthew B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayser, Matthew S</au><au>McClelland, Andrew C</au><au>Hughes, Ethan G</au><au>Dalva, Matthew B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular and Trans-Synaptic Regulation of Glutamatergic Synaptogenesis by EphB Receptors</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2006-11-22</date><risdate>2006</risdate><volume>26</volume><issue>47</issue><spage>12152</spage><epage>12164</epage><pages>12152-12164</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The majority of mature excitatory synapses in the CNS are found on dendritic spines and contain AMPA- and NMDA-type glutamate receptors apposed to presynaptic specializations. EphB receptor tyrosine kinase signaling has been implicated in both NMDA-type glutamate receptor clustering and dendritic spine formation, but it remains unclear whether EphB plays a broader role in presynaptic and postsynaptic development. Here, we find that EphB2 is involved in organizing excitatory synapses through the independent activities of particular EphB2 protein domains. We demonstrate that EphB2 controls AMPA-type glutamate receptor localization through PDZ (postsynaptic density-95/Discs large/zona occludens-1) binding domain interactions and triggers presynaptic differentiation via its ephrin binding domain. Knockdown of EphB2 in dissociated neurons results in decreased functional synaptic inputs, spines, and presynaptic specializations. Mice lacking EphB1-EphB3 have reduced numbers of synapses, and defects are rescued with postnatal reexpression of EphB2 in single neurons in brain slice. These results demonstrate that EphB2 acts to control the organization of specific classes of mature glutamatergic synapses.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>17122040</pmid><doi>10.1523/JNEUROSCI.3072-06.2006</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2006-11, Vol.26 (47), p.12152-12164 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6675446 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Cells, Cultured Cerebral Cortex - cytology Disks Large Homolog 4 Protein Embryo, Mammalian Glutamic Acid - metabolism Humans Immunohistochemistry - methods Intracellular Signaling Peptides and Proteins - metabolism Intracellular Space - physiology Luminescent Proteins - metabolism Membrane Proteins - metabolism Mice Mice, Knockout Mutagenesis - physiology Neurons - cytology Organ Culture Techniques Patch-Clamp Techniques - methods Presynaptic Terminals - metabolism Rats Receptor, EphB2 - metabolism Receptors, Eph Family - deficiency Receptors, Eph Family - physiology Receptors, Glutamate - genetics Receptors, Glutamate - metabolism RNA, Small Interfering - metabolism Synapses - physiology Synaptic Transmission - physiology Transfection - methods |
title | Intracellular and Trans-Synaptic Regulation of Glutamatergic Synaptogenesis by EphB Receptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20and%20Trans-Synaptic%20Regulation%20of%20Glutamatergic%20Synaptogenesis%20by%20EphB%20Receptors&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Kayser,%20Matthew%20S&rft.date=2006-11-22&rft.volume=26&rft.issue=47&rft.spage=12152&rft.epage=12164&rft.pages=12152-12164&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3072-06.2006&rft_dat=%3Cproquest_pubme%3E19501183%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19501183&rft_id=info:pmid/17122040&rfr_iscdi=true |