Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons

Activity-dependent morphological plasticity of neurons is central to understanding how the synaptic network of the CNS becomes reconfigured in response to experience. In recent years, several studies have shown that synaptic activation that leads to the induction of long-term potentiation also drive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2007-07, Vol.27 (30), p.8149-8156
Hauptverfasser: Nagerl, U. Valentin, Kostinger, German, Anderson, John C, Martin, Kevan A. C, Bonhoeffer, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8156
container_issue 30
container_start_page 8149
container_title The Journal of neuroscience
container_volume 27
creator Nagerl, U. Valentin
Kostinger, German
Anderson, John C
Martin, Kevan A. C
Bonhoeffer, Tobias
description Activity-dependent morphological plasticity of neurons is central to understanding how the synaptic network of the CNS becomes reconfigured in response to experience. In recent years, several studies have shown that synaptic activation that leads to the induction of long-term potentiation also drives the growth of new dendritic spines, raising the possibility that new synapses are made. We examine this directly by correlating time-lapse two-photon microscopy of newly formed spines on CA1 pyramidal neurons in organotypic hippocampal slices with electron microscopy. Our results show that, whereas spines that are only a few hours old rarely form synapses, older spines, ranging from 15 to 19 h, consistently have ultrastructural hallmarks typical of synapses. This is in agreement with a recent in vivo study that showed that, after a few days, new spines consistently form functional synapses. In addition, our study provides a much more detailed understanding of the first few hours after activity-dependent spinogenesis. Within tens of minutes, physical contacts are formed with existing presynaptic boutons, which slowly, over the course of many hours, mature into new synapses.
doi_str_mv 10.1523/JNEUROSCI.0511-07.2007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6672732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19730668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-8ebc32ff8a9533d1d3b630873f27007cb5fbe9c554e83bb0705a64e2769d0d7c3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EomnhL1R7gtOGsb22dy9IVSi0qGoRoVwtr3c2MdovbKdR_n0dJQpw4jSHeebVO3oIuaQwp4LxD1_vrx-_PywXt3MQlOag5gxAvSCztK1yVgB9SWbAFOSyUMUZOQ_hFyQCqHpNzqiSgkkQM_Lzmx-jNzZiky13g5niuMIBgwuZaSP67MpG9-TiLv-EEw4NDjFbTm44UW7Ibtw0jdb0k-mye9z4cQhvyKvWdAHfHucFefx8_WNxk989fLldXN3lVlRFzEusLWdtW5pKcN7QhteSQ6l4m5qDsrVoa6ysEAWWvK5TfWFkgUzJqoFGWX5BPh5yp03dY2NTPW86PXnXG7_To3H6383g1no1PmkpFVOcpYB3xwA__t5giLp3wWLXmQHHTdAKFBelFP8FaaU4SFkmUB5A68cQPLanNhT03p0-udN7dxqU3rtLh5d___Ln7CgrAe8PwNqt1lvnUYfedF3Cqd5ut0xpDrqkRcWfAZwGpkk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19730668</pqid></control><display><type>article</type><title>Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nagerl, U. Valentin ; Kostinger, German ; Anderson, John C ; Martin, Kevan A. C ; Bonhoeffer, Tobias</creator><creatorcontrib>Nagerl, U. Valentin ; Kostinger, German ; Anderson, John C ; Martin, Kevan A. C ; Bonhoeffer, Tobias</creatorcontrib><description>Activity-dependent morphological plasticity of neurons is central to understanding how the synaptic network of the CNS becomes reconfigured in response to experience. In recent years, several studies have shown that synaptic activation that leads to the induction of long-term potentiation also drives the growth of new dendritic spines, raising the possibility that new synapses are made. We examine this directly by correlating time-lapse two-photon microscopy of newly formed spines on CA1 pyramidal neurons in organotypic hippocampal slices with electron microscopy. Our results show that, whereas spines that are only a few hours old rarely form synapses, older spines, ranging from 15 to 19 h, consistently have ultrastructural hallmarks typical of synapses. This is in agreement with a recent in vivo study that showed that, after a few days, new spines consistently form functional synapses. In addition, our study provides a much more detailed understanding of the first few hours after activity-dependent spinogenesis. Within tens of minutes, physical contacts are formed with existing presynaptic boutons, which slowly, over the course of many hours, mature into new synapses.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0511-07.2007</identifier><identifier>PMID: 17652605</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Animals, Newborn ; Dendritic Spines - physiology ; Dendritic Spines - ultrastructure ; Hippocampus - growth &amp; development ; Hippocampus - ultrastructure ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity - physiology ; Neurons - physiology ; Neurons - ultrastructure ; Synapses - physiology ; Synapses - ultrastructure ; Time Factors</subject><ispartof>The Journal of neuroscience, 2007-07, Vol.27 (30), p.8149-8156</ispartof><rights>Copyright © 2007 Society for Neuroscience 0270-6474/07/278149-08$15.00/0 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-8ebc32ff8a9533d1d3b630873f27007cb5fbe9c554e83bb0705a64e2769d0d7c3</citedby><cites>FETCH-LOGICAL-c594t-8ebc32ff8a9533d1d3b630873f27007cb5fbe9c554e83bb0705a64e2769d0d7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672732/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672732/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17652605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagerl, U. Valentin</creatorcontrib><creatorcontrib>Kostinger, German</creatorcontrib><creatorcontrib>Anderson, John C</creatorcontrib><creatorcontrib>Martin, Kevan A. C</creatorcontrib><creatorcontrib>Bonhoeffer, Tobias</creatorcontrib><title>Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Activity-dependent morphological plasticity of neurons is central to understanding how the synaptic network of the CNS becomes reconfigured in response to experience. In recent years, several studies have shown that synaptic activation that leads to the induction of long-term potentiation also drives the growth of new dendritic spines, raising the possibility that new synapses are made. We examine this directly by correlating time-lapse two-photon microscopy of newly formed spines on CA1 pyramidal neurons in organotypic hippocampal slices with electron microscopy. Our results show that, whereas spines that are only a few hours old rarely form synapses, older spines, ranging from 15 to 19 h, consistently have ultrastructural hallmarks typical of synapses. This is in agreement with a recent in vivo study that showed that, after a few days, new spines consistently form functional synapses. In addition, our study provides a much more detailed understanding of the first few hours after activity-dependent spinogenesis. Within tens of minutes, physical contacts are formed with existing presynaptic boutons, which slowly, over the course of many hours, mature into new synapses.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Dendritic Spines - physiology</subject><subject>Dendritic Spines - ultrastructure</subject><subject>Hippocampus - growth &amp; development</subject><subject>Hippocampus - ultrastructure</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>Time Factors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhi0EomnhL1R7gtOGsb22dy9IVSi0qGoRoVwtr3c2MdovbKdR_n0dJQpw4jSHeebVO3oIuaQwp4LxD1_vrx-_PywXt3MQlOag5gxAvSCztK1yVgB9SWbAFOSyUMUZOQ_hFyQCqHpNzqiSgkkQM_Lzmx-jNzZiky13g5niuMIBgwuZaSP67MpG9-TiLv-EEw4NDjFbTm44UW7Ibtw0jdb0k-mye9z4cQhvyKvWdAHfHucFefx8_WNxk989fLldXN3lVlRFzEusLWdtW5pKcN7QhteSQ6l4m5qDsrVoa6ysEAWWvK5TfWFkgUzJqoFGWX5BPh5yp03dY2NTPW86PXnXG7_To3H6383g1no1PmkpFVOcpYB3xwA__t5giLp3wWLXmQHHTdAKFBelFP8FaaU4SFkmUB5A68cQPLanNhT03p0-udN7dxqU3rtLh5d___Ln7CgrAe8PwNqt1lvnUYfedF3Cqd5ut0xpDrqkRcWfAZwGpkk</recordid><startdate>20070725</startdate><enddate>20070725</enddate><creator>Nagerl, U. Valentin</creator><creator>Kostinger, German</creator><creator>Anderson, John C</creator><creator>Martin, Kevan A. C</creator><creator>Bonhoeffer, Tobias</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070725</creationdate><title>Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons</title><author>Nagerl, U. Valentin ; Kostinger, German ; Anderson, John C ; Martin, Kevan A. C ; Bonhoeffer, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-8ebc32ff8a9533d1d3b630873f27007cb5fbe9c554e83bb0705a64e2769d0d7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Dendritic Spines - physiology</topic><topic>Dendritic Spines - ultrastructure</topic><topic>Hippocampus - growth &amp; development</topic><topic>Hippocampus - ultrastructure</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagerl, U. Valentin</creatorcontrib><creatorcontrib>Kostinger, German</creatorcontrib><creatorcontrib>Anderson, John C</creatorcontrib><creatorcontrib>Martin, Kevan A. C</creatorcontrib><creatorcontrib>Bonhoeffer, Tobias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagerl, U. Valentin</au><au>Kostinger, German</au><au>Anderson, John C</au><au>Martin, Kevan A. C</au><au>Bonhoeffer, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2007-07-25</date><risdate>2007</risdate><volume>27</volume><issue>30</issue><spage>8149</spage><epage>8156</epage><pages>8149-8156</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Activity-dependent morphological plasticity of neurons is central to understanding how the synaptic network of the CNS becomes reconfigured in response to experience. In recent years, several studies have shown that synaptic activation that leads to the induction of long-term potentiation also drives the growth of new dendritic spines, raising the possibility that new synapses are made. We examine this directly by correlating time-lapse two-photon microscopy of newly formed spines on CA1 pyramidal neurons in organotypic hippocampal slices with electron microscopy. Our results show that, whereas spines that are only a few hours old rarely form synapses, older spines, ranging from 15 to 19 h, consistently have ultrastructural hallmarks typical of synapses. This is in agreement with a recent in vivo study that showed that, after a few days, new spines consistently form functional synapses. In addition, our study provides a much more detailed understanding of the first few hours after activity-dependent spinogenesis. Within tens of minutes, physical contacts are formed with existing presynaptic boutons, which slowly, over the course of many hours, mature into new synapses.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>17652605</pmid><doi>10.1523/JNEUROSCI.0511-07.2007</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2007-07, Vol.27 (30), p.8149-8156
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6672732
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Animals, Newborn
Dendritic Spines - physiology
Dendritic Spines - ultrastructure
Hippocampus - growth & development
Hippocampus - ultrastructure
Mice
Mice, Inbred C57BL
Neuronal Plasticity - physiology
Neurons - physiology
Neurons - ultrastructure
Synapses - physiology
Synapses - ultrastructure
Time Factors
title Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protracted%20Synaptogenesis%20after%20Activity-Dependent%20Spinogenesis%20in%20Hippocampal%20Neurons&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Nagerl,%20U.%20Valentin&rft.date=2007-07-25&rft.volume=27&rft.issue=30&rft.spage=8149&rft.epage=8156&rft.pages=8149-8156&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0511-07.2007&rft_dat=%3Cproquest_pubme%3E19730668%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19730668&rft_id=info:pmid/17652605&rfr_iscdi=true