Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects

Despite compelling phenomenological evidence that small electric fields (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2007-03, Vol.27 (11), p.3030-3036
Hauptverfasser: Radman, Thomas, Su, Yuzhuo, An, Je Hi, Parra, Lucas C, Bikson, Marom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3036
container_issue 11
container_start_page 3030
container_title The Journal of neuroscience
container_volume 27
creator Radman, Thomas
Su, Yuzhuo
An, Je Hi
Parra, Lucas C
Bikson, Marom
description Despite compelling phenomenological evidence that small electric fields (
doi_str_mv 10.1523/JNEUROSCI.0095-07.2007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6672570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19602268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-26babac4dded025038f3a5f54925b55ef4f1a78871b64bd622519cbd962344923</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhK1Q-wSnL2PGfhANStUphUdVKtD1bTmLvujjxYme74tvjaFcFTmgOHmt-72lGD6ELAkvCafnx203z8P32brVeAtS8ALmkAPIFWuRpXVAG5CVaAJVQCCbZGXqT0iNkAoh8jc6ILAXUVCzQ493O_TD43g1u3ODLYeeddSbhaWtwY63pJhwsbnxuouvwlTO-TziM-MbsYxjTJ7yeNZ2eXP5hGyJuxj5szBj26YiffNJb9Mpqn8y703uOHq6a-9XX4vr2y3p1eV10vGZTQUWrW92xvjc9UA5lZUvNLWc15S3nxjJLtKwqSVrB2l5QykndtX0taMkyVJ6jz0ff3b4dTN-ZcYraq110g46_VNBO_TsZ3VZtwpMSQlIuIRu8PxnE8HNv0qQGlzrjvR5NvkpJoIKSqvovSGoBlIoZFEewiyGlaOzzNgTUnKd6zlPNeSqQas4zCy_-vuWP7BRgBj4cga3bbA8uGpUG7X3GiTocDlQqQlQJuX4DV2Crjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19602268</pqid></control><display><type>article</type><title>Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Radman, Thomas ; Su, Yuzhuo ; An, Je Hi ; Parra, Lucas C ; Bikson, Marom</creator><creatorcontrib>Radman, Thomas ; Su, Yuzhuo ; An, Je Hi ; Parra, Lucas C ; Bikson, Marom</creatorcontrib><description>Despite compelling phenomenological evidence that small electric fields (&lt;5 mV/mm) can affect brain function, a quantitative and experimentally verified theory is currently lacking. Here we demonstrate a novel mechanism by which the nonlinear properties of single neurons "amplify" the effect of small electric fields: when concurrent to suprathreshold synaptic input, small electric fields can have significant effects on spike timing. For low-frequency fields, our theory predicts a linear dependency of spike timing changes on field strength. For high-frequency fields (relative to the synaptic input), the theory predicts coherent firing, with mean firing phase and coherence each increasing monotonically with field strength. Importantly, in both cases, the effects of fields on spike timing are amplified with decreasing synaptic input slope and increased cell susceptibility (millivolt membrane polarization per field amplitude). We confirmed these predictions experimentally using CA1 hippocampal neurons in vitro exposed to static (direct current) and oscillating (alternating current) uniform electric fields. In addition, we develop a robust method to quantify cell susceptibility using spike timing. Our results provide a precise mechanism for a functional role of endogenous field oscillations (e.g., gamma) in brain function and introduce a framework for considering the effects of environmental fields and design of low-intensity therapeutic neurostimulation technologies.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0095-07.2007</identifier><identifier>PMID: 17360926</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; Biological Clocks - physiology ; Electric Stimulation - methods ; Male ; Neurons - physiology ; Rats ; Rats, Sprague-Dawley ; Time Factors</subject><ispartof>The Journal of neuroscience, 2007-03, Vol.27 (11), p.3030-3036</ispartof><rights>Copyright © 2007 Society for Neuroscience 0270-6474/07/273030-07$15.00/0 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-26babac4dded025038f3a5f54925b55ef4f1a78871b64bd622519cbd962344923</citedby><cites>FETCH-LOGICAL-c594t-26babac4dded025038f3a5f54925b55ef4f1a78871b64bd622519cbd962344923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672570/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672570/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17360926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radman, Thomas</creatorcontrib><creatorcontrib>Su, Yuzhuo</creatorcontrib><creatorcontrib>An, Je Hi</creatorcontrib><creatorcontrib>Parra, Lucas C</creatorcontrib><creatorcontrib>Bikson, Marom</creatorcontrib><title>Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Despite compelling phenomenological evidence that small electric fields (&lt;5 mV/mm) can affect brain function, a quantitative and experimentally verified theory is currently lacking. Here we demonstrate a novel mechanism by which the nonlinear properties of single neurons "amplify" the effect of small electric fields: when concurrent to suprathreshold synaptic input, small electric fields can have significant effects on spike timing. For low-frequency fields, our theory predicts a linear dependency of spike timing changes on field strength. For high-frequency fields (relative to the synaptic input), the theory predicts coherent firing, with mean firing phase and coherence each increasing monotonically with field strength. Importantly, in both cases, the effects of fields on spike timing are amplified with decreasing synaptic input slope and increased cell susceptibility (millivolt membrane polarization per field amplitude). We confirmed these predictions experimentally using CA1 hippocampal neurons in vitro exposed to static (direct current) and oscillating (alternating current) uniform electric fields. In addition, we develop a robust method to quantify cell susceptibility using spike timing. Our results provide a precise mechanism for a functional role of endogenous field oscillations (e.g., gamma) in brain function and introduce a framework for considering the effects of environmental fields and design of low-intensity therapeutic neurostimulation technologies.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological Clocks - physiology</subject><subject>Electric Stimulation - methods</subject><subject>Male</subject><subject>Neurons - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Time Factors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EokvhK1Q-wSnL2PGfhANStUphUdVKtD1bTmLvujjxYme74tvjaFcFTmgOHmt-72lGD6ELAkvCafnx203z8P32brVeAtS8ALmkAPIFWuRpXVAG5CVaAJVQCCbZGXqT0iNkAoh8jc6ILAXUVCzQ493O_TD43g1u3ODLYeeddSbhaWtwY63pJhwsbnxuouvwlTO-TziM-MbsYxjTJ7yeNZ2eXP5hGyJuxj5szBj26YiffNJb9Mpqn8y703uOHq6a-9XX4vr2y3p1eV10vGZTQUWrW92xvjc9UA5lZUvNLWc15S3nxjJLtKwqSVrB2l5QykndtX0taMkyVJ6jz0ff3b4dTN-ZcYraq110g46_VNBO_TsZ3VZtwpMSQlIuIRu8PxnE8HNv0qQGlzrjvR5NvkpJoIKSqvovSGoBlIoZFEewiyGlaOzzNgTUnKd6zlPNeSqQas4zCy_-vuWP7BRgBj4cga3bbA8uGpUG7X3GiTocDlQqQlQJuX4DV2Crjw</recordid><startdate>20070314</startdate><enddate>20070314</enddate><creator>Radman, Thomas</creator><creator>Su, Yuzhuo</creator><creator>An, Je Hi</creator><creator>Parra, Lucas C</creator><creator>Bikson, Marom</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070314</creationdate><title>Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects</title><author>Radman, Thomas ; Su, Yuzhuo ; An, Je Hi ; Parra, Lucas C ; Bikson, Marom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-26babac4dded025038f3a5f54925b55ef4f1a78871b64bd622519cbd962344923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological Clocks - physiology</topic><topic>Electric Stimulation - methods</topic><topic>Male</topic><topic>Neurons - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radman, Thomas</creatorcontrib><creatorcontrib>Su, Yuzhuo</creatorcontrib><creatorcontrib>An, Je Hi</creatorcontrib><creatorcontrib>Parra, Lucas C</creatorcontrib><creatorcontrib>Bikson, Marom</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radman, Thomas</au><au>Su, Yuzhuo</au><au>An, Je Hi</au><au>Parra, Lucas C</au><au>Bikson, Marom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2007-03-14</date><risdate>2007</risdate><volume>27</volume><issue>11</issue><spage>3030</spage><epage>3036</epage><pages>3030-3036</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Despite compelling phenomenological evidence that small electric fields (&lt;5 mV/mm) can affect brain function, a quantitative and experimentally verified theory is currently lacking. Here we demonstrate a novel mechanism by which the nonlinear properties of single neurons "amplify" the effect of small electric fields: when concurrent to suprathreshold synaptic input, small electric fields can have significant effects on spike timing. For low-frequency fields, our theory predicts a linear dependency of spike timing changes on field strength. For high-frequency fields (relative to the synaptic input), the theory predicts coherent firing, with mean firing phase and coherence each increasing monotonically with field strength. Importantly, in both cases, the effects of fields on spike timing are amplified with decreasing synaptic input slope and increased cell susceptibility (millivolt membrane polarization per field amplitude). We confirmed these predictions experimentally using CA1 hippocampal neurons in vitro exposed to static (direct current) and oscillating (alternating current) uniform electric fields. In addition, we develop a robust method to quantify cell susceptibility using spike timing. Our results provide a precise mechanism for a functional role of endogenous field oscillations (e.g., gamma) in brain function and introduce a framework for considering the effects of environmental fields and design of low-intensity therapeutic neurostimulation technologies.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>17360926</pmid><doi>10.1523/JNEUROSCI.0095-07.2007</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2007-03, Vol.27 (11), p.3030-3036
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6672570
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Action Potentials - physiology
Animals
Biological Clocks - physiology
Electric Stimulation - methods
Male
Neurons - physiology
Rats
Rats, Sprague-Dawley
Time Factors
title Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spike%20Timing%20Amplifies%20the%20Effect%20of%20Electric%20Fields%20on%20Neurons:%20Implications%20for%20Endogenous%20Field%20Effects&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Radman,%20Thomas&rft.date=2007-03-14&rft.volume=27&rft.issue=11&rft.spage=3030&rft.epage=3036&rft.pages=3030-3036&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0095-07.2007&rft_dat=%3Cproquest_pubme%3E19602268%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19602268&rft_id=info:pmid/17360926&rfr_iscdi=true