Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects
Despite compelling phenomenological evidence that small electric fields (
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2007-03, Vol.27 (11), p.3030-3036 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3036 |
---|---|
container_issue | 11 |
container_start_page | 3030 |
container_title | The Journal of neuroscience |
container_volume | 27 |
creator | Radman, Thomas Su, Yuzhuo An, Je Hi Parra, Lucas C Bikson, Marom |
description | Despite compelling phenomenological evidence that small electric fields ( |
doi_str_mv | 10.1523/JNEUROSCI.0095-07.2007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6672570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19602268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-26babac4dded025038f3a5f54925b55ef4f1a78871b64bd622519cbd962344923</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhK1Q-wSnL2PGfhANStUphUdVKtD1bTmLvujjxYme74tvjaFcFTmgOHmt-72lGD6ELAkvCafnx203z8P32brVeAtS8ALmkAPIFWuRpXVAG5CVaAJVQCCbZGXqT0iNkAoh8jc6ILAXUVCzQ493O_TD43g1u3ODLYeeddSbhaWtwY63pJhwsbnxuouvwlTO-TziM-MbsYxjTJ7yeNZ2eXP5hGyJuxj5szBj26YiffNJb9Mpqn8y703uOHq6a-9XX4vr2y3p1eV10vGZTQUWrW92xvjc9UA5lZUvNLWc15S3nxjJLtKwqSVrB2l5QykndtX0taMkyVJ6jz0ff3b4dTN-ZcYraq110g46_VNBO_TsZ3VZtwpMSQlIuIRu8PxnE8HNv0qQGlzrjvR5NvkpJoIKSqvovSGoBlIoZFEewiyGlaOzzNgTUnKd6zlPNeSqQas4zCy_-vuWP7BRgBj4cga3bbA8uGpUG7X3GiTocDlQqQlQJuX4DV2Crjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19602268</pqid></control><display><type>article</type><title>Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Radman, Thomas ; Su, Yuzhuo ; An, Je Hi ; Parra, Lucas C ; Bikson, Marom</creator><creatorcontrib>Radman, Thomas ; Su, Yuzhuo ; An, Je Hi ; Parra, Lucas C ; Bikson, Marom</creatorcontrib><description>Despite compelling phenomenological evidence that small electric fields (<5 mV/mm) can affect brain function, a quantitative and experimentally verified theory is currently lacking. Here we demonstrate a novel mechanism by which the nonlinear properties of single neurons "amplify" the effect of small electric fields: when concurrent to suprathreshold synaptic input, small electric fields can have significant effects on spike timing. For low-frequency fields, our theory predicts a linear dependency of spike timing changes on field strength. For high-frequency fields (relative to the synaptic input), the theory predicts coherent firing, with mean firing phase and coherence each increasing monotonically with field strength. Importantly, in both cases, the effects of fields on spike timing are amplified with decreasing synaptic input slope and increased cell susceptibility (millivolt membrane polarization per field amplitude). We confirmed these predictions experimentally using CA1 hippocampal neurons in vitro exposed to static (direct current) and oscillating (alternating current) uniform electric fields. In addition, we develop a robust method to quantify cell susceptibility using spike timing. Our results provide a precise mechanism for a functional role of endogenous field oscillations (e.g., gamma) in brain function and introduce a framework for considering the effects of environmental fields and design of low-intensity therapeutic neurostimulation technologies.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0095-07.2007</identifier><identifier>PMID: 17360926</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; Biological Clocks - physiology ; Electric Stimulation - methods ; Male ; Neurons - physiology ; Rats ; Rats, Sprague-Dawley ; Time Factors</subject><ispartof>The Journal of neuroscience, 2007-03, Vol.27 (11), p.3030-3036</ispartof><rights>Copyright © 2007 Society for Neuroscience 0270-6474/07/273030-07$15.00/0 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-26babac4dded025038f3a5f54925b55ef4f1a78871b64bd622519cbd962344923</citedby><cites>FETCH-LOGICAL-c594t-26babac4dded025038f3a5f54925b55ef4f1a78871b64bd622519cbd962344923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672570/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672570/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17360926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radman, Thomas</creatorcontrib><creatorcontrib>Su, Yuzhuo</creatorcontrib><creatorcontrib>An, Je Hi</creatorcontrib><creatorcontrib>Parra, Lucas C</creatorcontrib><creatorcontrib>Bikson, Marom</creatorcontrib><title>Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Despite compelling phenomenological evidence that small electric fields (<5 mV/mm) can affect brain function, a quantitative and experimentally verified theory is currently lacking. Here we demonstrate a novel mechanism by which the nonlinear properties of single neurons "amplify" the effect of small electric fields: when concurrent to suprathreshold synaptic input, small electric fields can have significant effects on spike timing. For low-frequency fields, our theory predicts a linear dependency of spike timing changes on field strength. For high-frequency fields (relative to the synaptic input), the theory predicts coherent firing, with mean firing phase and coherence each increasing monotonically with field strength. Importantly, in both cases, the effects of fields on spike timing are amplified with decreasing synaptic input slope and increased cell susceptibility (millivolt membrane polarization per field amplitude). We confirmed these predictions experimentally using CA1 hippocampal neurons in vitro exposed to static (direct current) and oscillating (alternating current) uniform electric fields. In addition, we develop a robust method to quantify cell susceptibility using spike timing. Our results provide a precise mechanism for a functional role of endogenous field oscillations (e.g., gamma) in brain function and introduce a framework for considering the effects of environmental fields and design of low-intensity therapeutic neurostimulation technologies.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological Clocks - physiology</subject><subject>Electric Stimulation - methods</subject><subject>Male</subject><subject>Neurons - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Time Factors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EokvhK1Q-wSnL2PGfhANStUphUdVKtD1bTmLvujjxYme74tvjaFcFTmgOHmt-72lGD6ELAkvCafnx203z8P32brVeAtS8ALmkAPIFWuRpXVAG5CVaAJVQCCbZGXqT0iNkAoh8jc6ILAXUVCzQ493O_TD43g1u3ODLYeeddSbhaWtwY63pJhwsbnxuouvwlTO-TziM-MbsYxjTJ7yeNZ2eXP5hGyJuxj5szBj26YiffNJb9Mpqn8y703uOHq6a-9XX4vr2y3p1eV10vGZTQUWrW92xvjc9UA5lZUvNLWc15S3nxjJLtKwqSVrB2l5QykndtX0taMkyVJ6jz0ff3b4dTN-ZcYraq110g46_VNBO_TsZ3VZtwpMSQlIuIRu8PxnE8HNv0qQGlzrjvR5NvkpJoIKSqvovSGoBlIoZFEewiyGlaOzzNgTUnKd6zlPNeSqQas4zCy_-vuWP7BRgBj4cga3bbA8uGpUG7X3GiTocDlQqQlQJuX4DV2Crjw</recordid><startdate>20070314</startdate><enddate>20070314</enddate><creator>Radman, Thomas</creator><creator>Su, Yuzhuo</creator><creator>An, Je Hi</creator><creator>Parra, Lucas C</creator><creator>Bikson, Marom</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070314</creationdate><title>Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects</title><author>Radman, Thomas ; Su, Yuzhuo ; An, Je Hi ; Parra, Lucas C ; Bikson, Marom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-26babac4dded025038f3a5f54925b55ef4f1a78871b64bd622519cbd962344923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological Clocks - physiology</topic><topic>Electric Stimulation - methods</topic><topic>Male</topic><topic>Neurons - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radman, Thomas</creatorcontrib><creatorcontrib>Su, Yuzhuo</creatorcontrib><creatorcontrib>An, Je Hi</creatorcontrib><creatorcontrib>Parra, Lucas C</creatorcontrib><creatorcontrib>Bikson, Marom</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radman, Thomas</au><au>Su, Yuzhuo</au><au>An, Je Hi</au><au>Parra, Lucas C</au><au>Bikson, Marom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2007-03-14</date><risdate>2007</risdate><volume>27</volume><issue>11</issue><spage>3030</spage><epage>3036</epage><pages>3030-3036</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Despite compelling phenomenological evidence that small electric fields (<5 mV/mm) can affect brain function, a quantitative and experimentally verified theory is currently lacking. Here we demonstrate a novel mechanism by which the nonlinear properties of single neurons "amplify" the effect of small electric fields: when concurrent to suprathreshold synaptic input, small electric fields can have significant effects on spike timing. For low-frequency fields, our theory predicts a linear dependency of spike timing changes on field strength. For high-frequency fields (relative to the synaptic input), the theory predicts coherent firing, with mean firing phase and coherence each increasing monotonically with field strength. Importantly, in both cases, the effects of fields on spike timing are amplified with decreasing synaptic input slope and increased cell susceptibility (millivolt membrane polarization per field amplitude). We confirmed these predictions experimentally using CA1 hippocampal neurons in vitro exposed to static (direct current) and oscillating (alternating current) uniform electric fields. In addition, we develop a robust method to quantify cell susceptibility using spike timing. Our results provide a precise mechanism for a functional role of endogenous field oscillations (e.g., gamma) in brain function and introduce a framework for considering the effects of environmental fields and design of low-intensity therapeutic neurostimulation technologies.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>17360926</pmid><doi>10.1523/JNEUROSCI.0095-07.2007</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2007-03, Vol.27 (11), p.3030-3036 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6672570 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Action Potentials - physiology Animals Biological Clocks - physiology Electric Stimulation - methods Male Neurons - physiology Rats Rats, Sprague-Dawley Time Factors |
title | Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spike%20Timing%20Amplifies%20the%20Effect%20of%20Electric%20Fields%20on%20Neurons:%20Implications%20for%20Endogenous%20Field%20Effects&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Radman,%20Thomas&rft.date=2007-03-14&rft.volume=27&rft.issue=11&rft.spage=3030&rft.epage=3036&rft.pages=3030-3036&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0095-07.2007&rft_dat=%3Cproquest_pubme%3E19602268%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19602268&rft_id=info:pmid/17360926&rfr_iscdi=true |