CNS Learns Stable, Accurate, and Efficient Movements Using a Simple Algorithm

We propose a new model of motor learning to explain the exceptional dexterity and rapid adaptation to change, which characterize human motor control. It is based on the brain simultaneously optimizing stability, accuracy and efficiency. Formulated as a V-shaped learning function, it stipulates preci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2008-10, Vol.28 (44), p.11165-11173
Hauptverfasser: Franklin, David W, Burdet, Etienne, Peng Tee, Keng, Osu, Rieko, Chew, Chee-Meng, Milner, Theodore E, Kawato, Mitsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11173
container_issue 44
container_start_page 11165
container_title The Journal of neuroscience
container_volume 28
creator Franklin, David W
Burdet, Etienne
Peng Tee, Keng
Osu, Rieko
Chew, Chee-Meng
Milner, Theodore E
Kawato, Mitsuo
description We propose a new model of motor learning to explain the exceptional dexterity and rapid adaptation to change, which characterize human motor control. It is based on the brain simultaneously optimizing stability, accuracy and efficiency. Formulated as a V-shaped learning function, it stipulates precisely how feedforward commands to individual muscles are adjusted based on error. Changes in muscle activation patterns recorded in experiments provide direct support for this control scheme. In simulated motor learning of novel environmental interactions, muscle activation, force and impedance evolved in a manner similar to humans, demonstrating its efficiency and plausibility. This model of motor learning offers new insights as to how the brain controls the complex musculoskeletal system and iteratively adjusts motor commands to improve motor skills with practice.
doi_str_mv 10.1523/JNEUROSCI.3099-08.2008
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6671516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69726542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-600e47f5d830cc6a126eb391a499a168c641fdd9ed2c90c9f03b77bbf13649363</originalsourceid><addsrcrecordid>eNpVkdFv0zAQxi3ExMrGvzD5CfGwlDvHseMXpKoqMNRt0ro-W47jtEZOUux0Ff89qVoNeLqT7nfffbqPkBuEKRYs__zjYbF-elzN76Y5KJVBOWUA5RsyGacqYxzwLZkAk5AJLvkleZ_STwCQgPIducRSSeSFmpD7-cOKLp2JXaKrwVTB3dKZtftohrEzXU0XTeOtd91A7_sX145Nouvkuw01dOXbXXB0FjZ99MO2vSYXjQnJfTjXK7L-unief8-Wj9_u5rNlZgvBh0wAOC6boi5zsFYYZMJVuULDlTIoSis4NnWtXM2sAqsayCspq6rBXHCVi_yKfDnp7vZV62o7moom6F30rYm_dW-8_n_S-a3e9C9aCIkFHgU-ngVi_2vv0qBbn6wLwXSu3yctlGSi4GwExQm0sU8puub1CII-JqFfk9DHJDSU-pjEuHjzr8W_a-fXj8CnE7D1m-3BR6dTa0IYcdSHw4GVmnONiKLI_wA8O5Na</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69726542</pqid></control><display><type>article</type><title>CNS Learns Stable, Accurate, and Efficient Movements Using a Simple Algorithm</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Franklin, David W ; Burdet, Etienne ; Peng Tee, Keng ; Osu, Rieko ; Chew, Chee-Meng ; Milner, Theodore E ; Kawato, Mitsuo</creator><creatorcontrib>Franklin, David W ; Burdet, Etienne ; Peng Tee, Keng ; Osu, Rieko ; Chew, Chee-Meng ; Milner, Theodore E ; Kawato, Mitsuo</creatorcontrib><description>We propose a new model of motor learning to explain the exceptional dexterity and rapid adaptation to change, which characterize human motor control. It is based on the brain simultaneously optimizing stability, accuracy and efficiency. Formulated as a V-shaped learning function, it stipulates precisely how feedforward commands to individual muscles are adjusted based on error. Changes in muscle activation patterns recorded in experiments provide direct support for this control scheme. In simulated motor learning of novel environmental interactions, muscle activation, force and impedance evolved in a manner similar to humans, demonstrating its efficiency and plausibility. This model of motor learning offers new insights as to how the brain controls the complex musculoskeletal system and iteratively adjusts motor commands to improve motor skills with practice.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3099-08.2008</identifier><identifier>PMID: 18971459</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Adaptation, Physiological - physiology ; Adult ; Algorithms ; Central Nervous System - physiology ; Female ; Humans ; Learning - physiology ; Male ; Movement - physiology ; Postural Balance - physiology ; Psychomotor Performance - physiology</subject><ispartof>The Journal of neuroscience, 2008-10, Vol.28 (44), p.11165-11173</ispartof><rights>Copyright © 2008 Society for Neuroscience 0270-6474/08/2811165-09$15.00/0 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-600e47f5d830cc6a126eb391a499a168c641fdd9ed2c90c9f03b77bbf13649363</citedby><cites>FETCH-LOGICAL-c564t-600e47f5d830cc6a126eb391a499a168c641fdd9ed2c90c9f03b77bbf13649363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6671516/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6671516/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18971459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franklin, David W</creatorcontrib><creatorcontrib>Burdet, Etienne</creatorcontrib><creatorcontrib>Peng Tee, Keng</creatorcontrib><creatorcontrib>Osu, Rieko</creatorcontrib><creatorcontrib>Chew, Chee-Meng</creatorcontrib><creatorcontrib>Milner, Theodore E</creatorcontrib><creatorcontrib>Kawato, Mitsuo</creatorcontrib><title>CNS Learns Stable, Accurate, and Efficient Movements Using a Simple Algorithm</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>We propose a new model of motor learning to explain the exceptional dexterity and rapid adaptation to change, which characterize human motor control. It is based on the brain simultaneously optimizing stability, accuracy and efficiency. Formulated as a V-shaped learning function, it stipulates precisely how feedforward commands to individual muscles are adjusted based on error. Changes in muscle activation patterns recorded in experiments provide direct support for this control scheme. In simulated motor learning of novel environmental interactions, muscle activation, force and impedance evolved in a manner similar to humans, demonstrating its efficiency and plausibility. This model of motor learning offers new insights as to how the brain controls the complex musculoskeletal system and iteratively adjusts motor commands to improve motor skills with practice.</description><subject>Adaptation, Physiological - physiology</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Central Nervous System - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Male</subject><subject>Movement - physiology</subject><subject>Postural Balance - physiology</subject><subject>Psychomotor Performance - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdFv0zAQxi3ExMrGvzD5CfGwlDvHseMXpKoqMNRt0ro-W47jtEZOUux0Ff89qVoNeLqT7nfffbqPkBuEKRYs__zjYbF-elzN76Y5KJVBOWUA5RsyGacqYxzwLZkAk5AJLvkleZ_STwCQgPIducRSSeSFmpD7-cOKLp2JXaKrwVTB3dKZtftohrEzXU0XTeOtd91A7_sX145Nouvkuw01dOXbXXB0FjZ99MO2vSYXjQnJfTjXK7L-unief8-Wj9_u5rNlZgvBh0wAOC6boi5zsFYYZMJVuULDlTIoSis4NnWtXM2sAqsayCspq6rBXHCVi_yKfDnp7vZV62o7moom6F30rYm_dW-8_n_S-a3e9C9aCIkFHgU-ngVi_2vv0qBbn6wLwXSu3yctlGSi4GwExQm0sU8puub1CII-JqFfk9DHJDSU-pjEuHjzr8W_a-fXj8CnE7D1m-3BR6dTa0IYcdSHw4GVmnONiKLI_wA8O5Na</recordid><startdate>20081029</startdate><enddate>20081029</enddate><creator>Franklin, David W</creator><creator>Burdet, Etienne</creator><creator>Peng Tee, Keng</creator><creator>Osu, Rieko</creator><creator>Chew, Chee-Meng</creator><creator>Milner, Theodore E</creator><creator>Kawato, Mitsuo</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081029</creationdate><title>CNS Learns Stable, Accurate, and Efficient Movements Using a Simple Algorithm</title><author>Franklin, David W ; Burdet, Etienne ; Peng Tee, Keng ; Osu, Rieko ; Chew, Chee-Meng ; Milner, Theodore E ; Kawato, Mitsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-600e47f5d830cc6a126eb391a499a168c641fdd9ed2c90c9f03b77bbf13649363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Central Nervous System - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Male</topic><topic>Movement - physiology</topic><topic>Postural Balance - physiology</topic><topic>Psychomotor Performance - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franklin, David W</creatorcontrib><creatorcontrib>Burdet, Etienne</creatorcontrib><creatorcontrib>Peng Tee, Keng</creatorcontrib><creatorcontrib>Osu, Rieko</creatorcontrib><creatorcontrib>Chew, Chee-Meng</creatorcontrib><creatorcontrib>Milner, Theodore E</creatorcontrib><creatorcontrib>Kawato, Mitsuo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franklin, David W</au><au>Burdet, Etienne</au><au>Peng Tee, Keng</au><au>Osu, Rieko</au><au>Chew, Chee-Meng</au><au>Milner, Theodore E</au><au>Kawato, Mitsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNS Learns Stable, Accurate, and Efficient Movements Using a Simple Algorithm</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2008-10-29</date><risdate>2008</risdate><volume>28</volume><issue>44</issue><spage>11165</spage><epage>11173</epage><pages>11165-11173</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>We propose a new model of motor learning to explain the exceptional dexterity and rapid adaptation to change, which characterize human motor control. It is based on the brain simultaneously optimizing stability, accuracy and efficiency. Formulated as a V-shaped learning function, it stipulates precisely how feedforward commands to individual muscles are adjusted based on error. Changes in muscle activation patterns recorded in experiments provide direct support for this control scheme. In simulated motor learning of novel environmental interactions, muscle activation, force and impedance evolved in a manner similar to humans, demonstrating its efficiency and plausibility. This model of motor learning offers new insights as to how the brain controls the complex musculoskeletal system and iteratively adjusts motor commands to improve motor skills with practice.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>18971459</pmid><doi>10.1523/JNEUROSCI.3099-08.2008</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2008-10, Vol.28 (44), p.11165-11173
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6671516
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adaptation, Physiological - physiology
Adult
Algorithms
Central Nervous System - physiology
Female
Humans
Learning - physiology
Male
Movement - physiology
Postural Balance - physiology
Psychomotor Performance - physiology
title CNS Learns Stable, Accurate, and Efficient Movements Using a Simple Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNS%20Learns%20Stable,%20Accurate,%20and%20Efficient%20Movements%20Using%20a%20Simple%20Algorithm&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Franklin,%20David%20W&rft.date=2008-10-29&rft.volume=28&rft.issue=44&rft.spage=11165&rft.epage=11173&rft.pages=11165-11173&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3099-08.2008&rft_dat=%3Cproquest_pubme%3E69726542%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69726542&rft_id=info:pmid/18971459&rfr_iscdi=true